Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Par complex in cancer: a regulator of normal cell polarity joins the dark side

Abstract

In the past 20 years, the discovery and characterization of the molecular machinery that controls cellular polarization have enabled us to achieve a better understanding of many biological processes. Spatial asymmetry or establishment of cell polarity during embryogenesis, epithelial morphogenesis, neuronal differentiation, and migration of fibroblasts and T cells are thought to rely on a small number of evolutionarily conserved proteins and pathways. Correct polarization is crucial for normal cell physiology and tissue homeostasis, and is lost in cancer. Thus, cell polarity signaling is likely to have an important function in tumor progression. Recent findings have identified a regulator of cell polarity, the Par complex, as an important signaling node in tumorigenesis. In normal cell types, the Par complex is part of the molecular machinery that regulates cell polarity and maintains normal cell homeostasis. As such, the polarity regulators are proposed to have a tumor suppressor function, consistent with the loss of polarity genes associated with hyperproliferation in Drosophila melanogaster. However, recent studies showing that some members of this complex also display pro-oncogenic activities suggest a more complex regulation of the polarity machinery during cellular transformation. Here, we examine the existing data about the different functions of the Par complex. We discuss how spatial restriction, binding partners and substrate specificity determine the signaling properties of Par complex proteins. A better understanding of these processes will very likely shed some light on how the Par complex can switch from a normal polarity regulation function to promotion of transformation downstream of oncogenes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Anderson DC, Gill JS, Cinalli RM, Nance J . (2008). Polarization of the C. elegans embryo by RhoGAP-mediated exclusion of PAR-6 from cell contacts. Science 320: 1771–1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aranda V, Haire T, Nolan ME, Calarco JP, Rosenberg AZ, Fawcett JP et al. (2006). Par6–aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat Cell Biol 8: 1235–1245.

    Article  CAS  PubMed  Google Scholar 

  • Assémat E, Bazellières E, Pallesi-Pocachard E, Le Bivic A, Massey-Harroche D . (2008). Polarity complex proteins. Biochim Biophys Acta 1778: 614–630.

    Article  PubMed  CAS  Google Scholar 

  • Betschinger J, Eisenhaber F, Knoblich JA . (2005). Phosphorylation-induced autoinhibition regulates the cytoskeletal protein Lethal (2) giant larvae. Curr Biol 15: 276–282.

    Article  CAS  PubMed  Google Scholar 

  • Betschinger J, Mechtler K, Knoblich JA . (2003). The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature 422: 326–330.

    Article  CAS  PubMed  Google Scholar 

  • Bialucha CU, Ferber EC, Pichaud F, Peak-Chew SY, Fujita Y . (2007). p32 is a novel mammalian Lgl binding protein that enhances the activity of protein kinase Czeta and regulates cell polarity. J Cell Biol 178: 575–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilder D . (2003). PDZ domain polarity complexes. Curr Biol 13: R661–R662.

    Article  CAS  PubMed  Google Scholar 

  • Bilder D . (2004). Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev 18: 1909–1925.

    Article  CAS  PubMed  Google Scholar 

  • Bilder D, Schober M, Perrimon N . (2003). Integrated activity of PDZ protein complexes regulates epithelial polarity. Nat Cell Biol 5: 53–58.

    Article  CAS  PubMed  Google Scholar 

  • Bose R, Wrana JL . (2006). Regulation of Par6 by extracellular signals. Curr Opin Cell Biol 18: 206–212.

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Stafford LJ, Bryan BA, Mitchell D, Liu M . (2005). G-protein-activated phospholipase C-beta, new partners for cell polarity proteins Par3 and Par6. Oncogene 24: 4293–4300.

    Article  CAS  PubMed  Google Scholar 

  • Calzada MJ, Esteban MA, Feijoo-Cuaresma M, Castellanos MC, Naranjo-Suarez S, Temes E et al. (2006). von Hippel-Lindau tumor suppressor protein regulates the assembly of intercellular junctions in renal cancer cells through hypoxia-inducible factor-independent mechanisms. Cancer Res 66: 1553–1560.

    Article  CAS  PubMed  Google Scholar 

  • Cau J, Hall A . (2005). Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. J Cell Sci 118: 2579–2587.

    Article  CAS  PubMed  Google Scholar 

  • Chabu C, Doe CQ . (2008). Dap160/intersectin binds and activates aPKC to regulate cell polarity and cell cycle progression. Development 135: 2739–2746.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Macara IG . (2005). Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat Cell Biol 7: 262–269.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Macara IG . (2006). Par-3 mediates the inhibition of LIM kinase 2 to regulate cofilin phosphorylation and tight junction assembly. J Cell Biol 172: 671–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen EE, Lingen MW, Zhu B, Zhu H, Straza MW, Pierce C et al. (2006). Protein kinase C zeta mediates epidermal growth factor-induced growth of head and neck tumor cells by regulating mitogen-activated protein kinase. Cancer Res 66: 6296–6303.

    Article  CAS  PubMed  Google Scholar 

  • Debnath J, Muthuswamy SK, Brugge JS . (2003). Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30: 256–268.

    Article  CAS  PubMed  Google Scholar 

  • Donson AM, Banerjee A, Gamboni-Robertson F, Fleitz JM, Foreman NK . (2000). Protein kinase C zeta isoform is critical for proliferation in human glioblastoma cell lines. J Neurooncol 47: 109–115.

    Article  CAS  PubMed  Google Scholar 

  • Dow LE, Humbert PO . (2007). Polarity regulators and the control of epithelial architecture, cell migration, and tumorigenesis. Int Rev Cytol 262: 253–302.

    Article  CAS  PubMed  Google Scholar 

  • Ebnet K, Aurrand-Lions M, Kuhn A, Kiefer F, Butz S, Zander K et al. (2003). The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity. J Cell Sci 116: 3879–3891.

    Article  CAS  PubMed  Google Scholar 

  • Ebnet K, Iden S, Gerke V, Suzuki A . (2008). Regulation of epithelial and endothelial junctions by PAR proteins. Front Biosci 13: 6520–6536.

    Article  CAS  PubMed  Google Scholar 

  • Ebnet K, Suzuki A, Horikoshi Y, Hirose T, Meyer Zu Brickwedde MK, Ohno S et al. (2001). The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J 20: 3738–3748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eder AM, Sui X, Rosen DG, Nolden LK, Cheng KW, Lahad JP et al. (2005). Atypical PKCiota contributes to poor prognosis through loss of apical-basal polarity and cyclin E overexpression in ovarian cancer. Proc Natl Acad Sci USA 102: 12519–12524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etienne-Manneville S . (2004). Cdc42—the centre of polarity. J Cell Sci 117: 1291–1300.

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S . (2008). Polarity proteins in migration and invasion. Oncogene 27: 6970–6980.

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A . (2001). Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106: 489–498.

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A . (2002). Rho GTPases in cell biology. Nature 420: 629–635.

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A . (2003a). Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature 421: 753–756.

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A . (2003b). Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Curr Opin Cell Biol 15: 67–72.

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Manneville JB, Nicholls S, Ferenczi MA, Hall A . (2005). Cdc42 and Par6-PKCzeta regulate the spatially localized association of Dlg1 and APC to control cell polarization. J Cell Biol 170: 895–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooqui R, Zhu S, Fenteany G . (2006). Glycogen synthase kinase-3 acts upstream of ADP-ribosylation factor 6 and Rac1 to regulate epithelial cell migration. Exp Cell Res 312: 1514–1525.

    Article  CAS  PubMed  Google Scholar 

  • Feng W, Wu H, Chan LN, Zhang M . (2008). Par-3-mediated junctional localization of the lipid phosphatase PTEN is required for cell polarity establishment. J Biol Chem 283: 23440–23449.

    Article  CAS  PubMed  Google Scholar 

  • Fields AP, Frederick LA, Regala RP . (2007). Targeting the oncogenic protein kinase Ciota signalling pathway for the treatment of cancer. Biochem Soc Trans 35: 996–1000.

    Article  CAS  PubMed  Google Scholar 

  • Fields AP, Murray NR, Gustafson WC . (2003). Characterization of the role of protein kinase C isozymes in colon carcinogenesis using transgenic mouse models. Methods Mol Biol 233: 539–553.

    CAS  PubMed  Google Scholar 

  • Fields AP, Regala RP . (2007). Protein kinase C iota: human oncogene, prognostic marker and therapeutic target. Pharmacol Res 55: 487–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming TP, Papenbrock T, Fesenko I, Hausen P, Sheth B . (2000). Assembly of tight junctions during early vertebrate development. Semin Cell Dev Biol 11: 291–299.

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Macara IG . (2004). Isoforms of the polarity protein par6 have distinct functions. J Biol Chem 279: 41557–41562.

    Article  CAS  PubMed  Google Scholar 

  • Garrard SM, Capaldo CT, Gao L, Rosen MK, Macara IG, Tomchick DR . (2003). Structure of Cdc42 in a complex with the GTPase-binding domain of the cell polarity protein, Par6. EMBO J 22: 1125–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerard A, Mertens AE, van der Kammen RA, Collard JG . (2007). The Par polarity complex regulates Rap1- and chemokine-induced T cell polarization. J Cell Biol 176: 863–875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein B, Macara IG . (2007). The PAR proteins: fundamental players in animal cell polarization. Dev Cell 13: 609–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes ER, Jani S, Gundersen GG . (2005). Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121: 451–463.

    Article  CAS  PubMed  Google Scholar 

  • Grifoni D, Garoia F, Bellosta P, Parisi F, De Biase D, Collina G et al. (2007). aPKC zeta cortical loading is associated with Lgl cytoplasmic release and tumor growth in Drosophila and human epithelia. Oncogene 26: 5960–5965.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Hebner C, Weaver VM, Debnath J . (2008). Modeling morphogenesis and oncogenesis in three-dimensional breast epithelial cultures. Annu Rev Pathol 3: 313–339.

    Article  CAS  PubMed  Google Scholar 

  • Hirose T, Izumi Y, Nagashima Y, Tamai-Nagai Y, Kurihara H, Sakai T et al. (2002). Involvement of ASIP/PAR-3 in the promotion of epithelial tight junction formation. J Cell Sci 115: 2485–2495.

    Article  CAS  PubMed  Google Scholar 

  • Horne-Badovinac S, Bilder D . (2008). Dynein regulates epithelial polarity and the apical localization of stardust A mRNA. PLoS Genet 4: e8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoshino M, Yoshimori T, Nakamura S . (2005). Small GTPase proteins Rin and Rit Bind to PAR6 GTP-dependently and regulate cell transformation. J Biol Chem 280: 22868–22874.

    Article  CAS  PubMed  Google Scholar 

  • Huber MA, Kraut N, Beug H . (2005). Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17: 548–558.

    Article  CAS  PubMed  Google Scholar 

  • Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED et al. (2007). Epithelial—mesenchymal and mesenchymal—epithelial transitions in carcinoma progression. J Cell Physiol 213: 374–383.

    Article  CAS  PubMed  Google Scholar 

  • Hurd TW, Gao L, Roh MH, Macara IG, Margolis B . (2003). Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nat Cell Biol 5: 137–142.

    Article  CAS  PubMed  Google Scholar 

  • Hurov J, Piwnica-Worms H . (2007). The Par-1/MARK family of protein kinases: from polarity to metabolism. Cell Cycle 6: 1966–1969.

    Article  CAS  PubMed  Google Scholar 

  • Hurov JB, Watkins JL, Piwnica-Worms H . (2004). Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr Biol 14: 736–741.

    Article  CAS  PubMed  Google Scholar 

  • Hutterer A, Betschinger J, Petronczki M, Knoblich JA . (2004). Sequential roles of Cdc42, Par-6, aPKC, and Lgl in the establishment of epithelial polarity during Drosophila embryogenesis. Dev Cell 6: 845–854.

    Article  CAS  PubMed  Google Scholar 

  • Izumi Y, Hirose T, Tamai Y, Hirai S, Nagashima Y, Fujimoto T et al. (1998). An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J Cell Biol 143: 95–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Q, Burk RD . (2008). Downregulation of integrins by von Hippel-Lindau (VHL) tumor suppressor protein is independent of VHL-directed hypoxia-inducible factor alpha degradation. Biochem Cell Biol 86: 227–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin YT, Ying XX, Hu YH, Zou Q, Wang HY, Xu YH . (2008). aPKC inhibitors might be the sensitizer of chemotherapy and adoptive immunotherapy in the treatment of hASIPa-overexpressed breast cancer. Oncol Res 17: 59–68.

    Article  PubMed  Google Scholar 

  • Joberty G, Petersen C, Gao L, Macara IG . (2000). The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2: 531–539.

    Article  CAS  PubMed  Google Scholar 

  • Johnson DI . (1999). Cdc42: an essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol Mol Biol Rev 63: 54–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay AJ, Hunter CP . (2001). CDC-42 regulates PAR protein localization and function to control cellular and embryonic polarity in C. elegans. Curr Biol 11: 474–481.

    Article  CAS  PubMed  Google Scholar 

  • Kemphues K . (2000). PARsing embryonic polarity. Cell 101: 345–348.

    Article  CAS  PubMed  Google Scholar 

  • Kemphues KJ, Priess JR, Morton DG, Cheng NS . (1988). Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52: 311–320.

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Datta A, Brakeman P, Yu W, Mostov KE . (2007). Polarity proteins PAR6 and aPKC regulate cell death through GSK-3beta in 3D epithelial morphogenesis. J Cell Sci 120: 2309–2317.

    Article  CAS  PubMed  Google Scholar 

  • Kojima Y, Akimoto K, Nagashima Y, Ishiguro H, Shirai S, Chishima T et al. (2008). The overexpression and altered localization of the atypical protein kinase C lambda/iota in breast cancer correlates with the pathologic type of these tumors. Hum Pathol 39: 824–831.

    Article  CAS  PubMed  Google Scholar 

  • Kuehn EW, Walz G, Benzing T . (2007). Von hippel-lindau: a tumor suppressor links microtubules to ciliogenesis and cancer development. Cancer Res 67: 4537–4540.

    Article  CAS  PubMed  Google Scholar 

  • Kuphal S, Wallner S, Schimanski CC, Bataille F, Hofer P, Strand S et al. (2006). Expression of Hugl-1 is strongly reduced in malignant melanoma. Oncogene 25: 103–110.

    Article  CAS  PubMed  Google Scholar 

  • Kurban G, Hudon V, Duplan E, Ohh M, Pause A . (2006). Characterization of a von Hippel Lindau pathway involved in extracellular matrix remodeling, cell invasion, and angiogenesis. Cancer Res 66: 1313–1319.

    Article  CAS  PubMed  Google Scholar 

  • Kuribayashi K, Nakamura K, Tanaka M, Sato T, Kato J, Sasaki K et al. (2007). Essential role of protein kinase C zeta in transducing a motility signal induced by superoxide and a chemotactic peptide, fMLP. J Cell Biol 176: 1049–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CY, Robinson KJ, Doe CQ . (2006). Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation. Nature 439: 594–598.

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Vasioukhin V . (2008). Cell polarity and cancer-cell and tissue polarity as a non-canonical tumor suppressor. J Cell Sci 121: 1141–1150.

    Article  CAS  PubMed  Google Scholar 

  • Lemmers C, Michel D, Lane-Guermonprez L, Delgrossi MH, Medina E, Arsanto JP et al. (2004). CRB3 binds directly to Par6 and regulates the morphogenesis of the tight junctions in mammalian epithelial cells. Mol Biol Cell 15: 1324–1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Wang L, Hays TS, Cai Y . (2008). Dynein-mediated apical localization of crumbs transcripts is required for Crumbs activity in epithelial polarity. J Cell Biol 180: 31–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin D, Edwards AS, Fawcett JP, Mbamalu G, Scott JD, Pawson T . (2000). A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2: 540–547.

    Article  CAS  PubMed  Google Scholar 

  • Ludford-Menting MJ, Oliaro J, Sacirbegovic F, Cheah ET, Pedersen N, Thomas SJ et al. (2005). A network of PDZ-containing proteins regulates T cell polarity and morphology during migration and immunological synapse formation. Immunity 22: 737–748.

    Article  CAS  PubMed  Google Scholar 

  • Macara IG . (2004). Parsing the polarity code. Nat Rev Mol Cell Biol 5: 220–231.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V et al. (2007). PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128: 383–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Belmonte F, Mostov K . (2007). Phosphoinositides control epithelial development. Cell Cycle 6: 1957–1961.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Belmonte F, Mostov K . (2008a). Regulation of cell polarity during epithelial morphogenesis. Curr Opin Cell Biol 20: 227–234.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Belmonte F, Mostov K . (2008b). Regulation of cell polarity during epithelial morphogenesis. Curr Opin Cell Biol 20: 227–234.

    Article  CAS  PubMed  Google Scholar 

  • Mertens AE, Rygiel TP, Olivo C, van der Kammen R, Collard JG . (2005). The Rac activator Tiam1 controls tight junction biogenesis in keratinocytes through binding to and activation of the Par polarity complex. J Cell Biol 170: 1029–1037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moeschel K, Beck A, Weigert C, Lammers R, Kalbacher H, Voelter W et al. (2004). Protein kinase C-zeta-induced phosphorylation of Ser318 in insulin receptor substrate-1 (IRS-1) attenuates the interaction with the insulin receptor and the tyrosine phosphorylation of IRS-1. J Biol Chem 279: 25157–25163.

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Bueno G, Portillo F, Cano A . (2008). Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 27: 6958–6969.

    Article  CAS  PubMed  Google Scholar 

  • Morrison SJ, Kimble J . (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441: 1068–1074.

    Article  CAS  PubMed  Google Scholar 

  • Moscat J, Diaz-Meco MT . (2000). The atypical protein kinase Cs. Functional specificity mediated by specific protein adapters. EMBO Rep 1: 399–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moscat J, Rennert P, Diaz-Meco MT . (2006). PKCzeta at the crossroad of NF-kappaB and Jak1/Stat6 signaling pathways. Cell Death Differ 13: 702–711.

    Article  CAS  PubMed  Google Scholar 

  • Munro EM . (2006). PAR proteins and the cytoskeleton: a marriage of equals. Curr Opin Cell Biol 18: 86–94.

    Article  CAS  PubMed  Google Scholar 

  • Murray NR, Jamieson L, Yu W, Zhang J, Gokmen-Polar Y, Sier D et al. (2004). Protein kinase Ciota is required for Ras transformation and colon carcinogenesis in vivo. J Cell Biol 164: 797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthuswamy SK, Li D, Lelievre S, Bissell MJ, Brugge JS . (2001). ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol 3: 785–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagai-Tamai Y, Mizuno K, Hirose T, Suzuki A, Ohno S . (2002). Regulated protein-protein interaction between aPKC and PAR-3 plays an essential role in the polarization of epithelial cells. Genes Cells 7: 1161–1171.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama M, Goto TM, Sugimoto M, Nishimura T, Shinagawa T, Ohno S et al. (2008). Rho-kinase phosphorylates PAR-3 and disrupts PAR complex formation. Dev Cell 14: 205–215.

    Article  CAS  PubMed  Google Scholar 

  • Nance J, Munro EM, Priess JR . (2003). C. elegans PAR-3 and PAR-6 are required for apicobasal asymmetries associated with cell adhesion and gastrulation. Development 130: 5339–5350.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T, Yamaguchi T, Kato K, Yoshizawa M, Nabeshima Y, Ohno S et al. (2005). PAR-6-PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nat Cell Biol 7: 270–277.

    Article  CAS  PubMed  Google Scholar 

  • Noda Y, Takeya R, Ohno S, Naito S, Ito T, Sumimoto H . (2001). Human homologues of the Caenorhabditis elegans cell polarity protein Par6 as an adaptor that links the small GTPases Rac and Cdc42 to atypical protein kinase C. Genes Cells 6: 107–119.

    Article  CAS  PubMed  Google Scholar 

  • Nolan ME, Aranda V, Lee S, Lakshmi B, Basu S, Allred C et al. (2008). The polarity protein Par6 induces cell proliferation and is overexpressed in breast cancer. Cancer Res 68: 1–10.

    Article  CAS  Google Scholar 

  • Okuda H, Hirai S, Takaki Y, Kamada M, Baba M, Sakai N et al. (1999). Direct interaction of the beta-domain of VHL tumor suppressor protein with the regulatory domain of atypical PKC isotypes. Biochem Biophys Res Commun 263: 491–497.

    Article  CAS  PubMed  Google Scholar 

  • Okuda H, Saitoh K, Hirai S, Iwai K, Takaki Y, Baba M et al. (2001). The von Hippel-Lindau tumor suppressor protein mediates ubiquitination of activated atypical protein kinase C. J Biol Chem 276: 43611–43617.

    Article  CAS  PubMed  Google Scholar 

  • Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL . (2005). Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307: 1603–1609.

    Article  CAS  PubMed  Google Scholar 

  • Pegtel DM, Ellenbroek SI, Mertens AE, van der Kammen RA, de Rooij J, Collard JG . (2007). The Par-Tiam1 complex controls persistent migration by stabilizing microtubule-dependent front-rear polarity. Curr Biol 17: 1623–1634.

    Article  CAS  PubMed  Google Scholar 

  • Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ . (1992). Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci USA 89: 9064–9068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson FC, Penkert RR, Volkman BF, Prehoda KE . (2004). Cdc42 regulates the Par-6 PDZ domain through an allosteric CRIB-PDZ transition. Mol Cell 13: 665–676.

    Article  CAS  PubMed  Google Scholar 

  • Plant PJ, Fawcett JP, Lin DC, Holdorf AD, Binns K, Kulkarni S et al. (2003). A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nat Cell Biol 5: 301–308.

    Article  CAS  PubMed  Google Scholar 

  • Qiu RG, Abo A, Steven Martin G . (2000). A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCzeta signaling and cell transformation. Curr Biol 10: 697–707.

    Article  CAS  PubMed  Google Scholar 

  • Regala RP, Thompson EA, Fields AP . (2008). Atypical protein kinase C iota expression and aurothiomalate sensitivity in human lung cancer cells. Cancer Res 68: 5888–5895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regala RP, Weems C, Jamieson L, Khoor A, Edell ES . (2005). Atypical protein kinase Cι is an oncogene in human non-small cell lung cancer. Cancer Res 65: 8905–8911.

    Article  CAS  PubMed  Google Scholar 

  • Rolls MM, Albertson R, Shih HP, Lee CY, Doe CQ . (2003). Drosophila aPKC regulates cell polarity and cell proliferation in neuroblasts and epithelia. J Cell Biol 163: 1089–1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schimanski CC, Schmitz G, Kashyap A, Bosserhoff AK, Bataille F, Schafer SC et al. (2005). Reduced expression of Hugl-1, the human homologue of Drosophila tumour suppressor gene lgl, contributes to progression of colorectal cancer. Oncogene 24: 3100–3109.

    Article  CAS  PubMed  Google Scholar 

  • Slamon DJ . (1987). Proto-oncogenes and human cancers. N Engl J Med 317: 955–957.

    Article  CAS  PubMed  Google Scholar 

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–712.

    Article  CAS  PubMed  Google Scholar 

  • Sotillos S, Díaz-Meco MT, Caminero E, Moscat J, Campuzano S . (2004). DaPKC-dependent phosphorylation of Crumbs is required for epithelial cell polarity in Drosophila. J Cell Biol 166: 549–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stallings-Mann M, Jamieson L, Regala RP, Weems C, Murray NR, Fields AP . (2006). A novel small-molecule inhibitor of protein kinase Ciota blocks transformed growth of non-small-cell lung cancer cells. Cancer Res 66: 1767–1774.

    Article  CAS  PubMed  Google Scholar 

  • Sun R, Gao P, Chen L, Ma D, Wang JM, Oppenheim JJ . (2005). Protein kinase C ζ is required for epidermal growth factor-induced chemotaxis of human breast cancer cells. Cancer Res 65: 1433–1441.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Hirata M, Kamimura K, Maniwa R, Yamanaka T, Mizuno K et al. (2004). aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr Biol 14: 1425–1435.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Ohno S . (2006). The Par–aPKC system: lessons in polarity. J Cell Sci 119: 979–987.

    Article  CAS  PubMed  Google Scholar 

  • Tepass U, Tanentzapf G, Ward R, Fehon R . (2001). Epithelial cell polarity and cell junctions in Drosophila. Annu Rev Genet 35: 747–784.

    Article  CAS  PubMed  Google Scholar 

  • Tong XK, Hussain NK, Adams AG, O'Bryan JP, McPherson PS . (2000). Intersectin can regulate the Ras/MAP kinase pathway independent of its role in endocytosis. J Biol Chem 275: 29894–29899.

    Article  CAS  PubMed  Google Scholar 

  • Townsend TA, Wrana JL, Davis GE, Barnett JV . (2008). Transforming growth factor-beta-stimulated endocardial cell transformation is dependent on Par6c regulation of RhoA. J Biol Chem 283: 13834–13841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukita S, Yamazaki Y, Katsuno T, Tamura A . (2008). Tight junction-based epithelial microenvironment and cell proliferation. Oncogene 27: 6930–6938.

    Article  CAS  PubMed  Google Scholar 

  • Tsuruga T, Nakagawa S, Watanabe M, Takizawa S, Matsumoto Y, Nagasaka K et al. (2007). Loss of Hugl-1 expression associates with lymph node metastasis in endometrial cancer. Oncol Res 16: 431–435.

    Article  CAS  PubMed  Google Scholar 

  • Underwood JM, Imbalzano KM, Weaver VM, Fischer AH, Imbalzano AN, Nickerson JA . (2006). The ultrastructure of MCF-10A acini. J Cell Physiol 208: 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Wang HR, Ogunjimi AA, Zhang Y, Ozdamar B, Bose R, Wrana JL . (2006). Degradation of RhoA by Smurf1 ubiquitin ligase. Methods Enzymol 406: 437–447.

    Article  CAS  PubMed  Google Scholar 

  • Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH et al. (2003). Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302: 1775–1779.

    Article  CAS  PubMed  Google Scholar 

  • Wang JB, Wu WJ, Cerione RA . (2005). Cdc42 and Ras cooperate to mediate cellular transformation by intersectin-L. J Biol Chem 280: 22883–22891.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Hurd TW, Margolis B . (2004). Tight junction protein Par6 interacts with an evolutionarily conserved region in the amino terminus of PALS1/stardust. J Biol Chem 279: 30715–30721.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Nie J, Zhou Q, Liu W, Zhu F, Chen W et al. (2008). Downregulation of Par-3 expression and disruption of Par complex integrity by TGF-beta during the process of epithelial to mesenchymal transition in rat proximal epithelial cells. Biochim Biophys Acta 1782: 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Weaver VM, Fischer AH, Peterson OW, Bissell MJ . (1996). The importance of the microenvironment in breast cancer progression: recapitulation of mammary tumorigenesis using a unique human mammary epithelial cell model and a three-dimensional culture assay. Biochem Cell Biol 74: 833–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weyrich P, Kapp K, Niederfellner G, Melzer M, Lehmann R, Haring HU et al. (2004). Partitioning-defective protein 6 regulates insulin-dependent glycogen synthesis via atypical protein kinase C. Mol Endocrinol 18: 1287–1300.

    Article  CAS  PubMed  Google Scholar 

  • Weyrich P, Neuscheler D, Melzer M, Hennige AM, Haring HU, Lammers R . (2007). The Par6alpha/aPKC complex regulates Akt1 activity by phosphorylating Thr34 in the PH-domain. Mol Cell Endocrinol 268: 30–36.

    Article  CAS  PubMed  Google Scholar 

  • Wodarz A, Nathke I . (2007). Cell polarity in development and cancer. Nat Cell Biol 9: 1016–1024.

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Feng W, Chen J, Chan LN, Huang S, Zhang M . (2007). PDZ domains of Par-3 as potential phosphoinositide signaling integrators. Mol Cell 28: 886–898.

    Article  CAS  PubMed  Google Scholar 

  • Xiang B, Muthuswamy SK . (2006). Using three-dimensional acinar structures for molecular and cell biological assays. Methods Enzymol 406: 692–701.

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka T, Horikoshi Y, Suzuki A, Sugiyama Y, Kitamura K, Maniwa R et al. (2001). PAR-6 regulates aPKC activity in a novel way and mediates cell-cell contact-induced formation of the epithelial junctional complex. Genes Cells 6: 721–731.

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka T, Ohno S . (2008). Role of Lgl/Dlg/Scribble in the regulation of epithelial junction, polarity and growth. Front Biosci 13: 6693–6707.

    Article  CAS  PubMed  Google Scholar 

  • Yarden Y . (2001). Biology of HER2 and its importance in breast cancer. Oncology 61 (Suppl 2): 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Yarden Y, Sliwkowski MX . (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Yi P, Feng Q, Amazit L, Lonard DM, Tsai SY, Tsai MJ et al. (2008). Atypical protein kinase C regulates dual pathways for degradation of the oncogenic coactivator SRC-3/AIB1. Mol Cell 29: 465–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Macara IG . (2006). The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis. Nat Cell Biol 8: 227–237.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Macara IG . (2008). The PAR-6 polarity protein regulates dendritic spine morphogenesis through p190 RhoGAP and the Rho GTPase. Dev Cell 14: 216–226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Huang J, Yang N, Liang S, Barchetti A, Giannakakis A et al. (2006). Integrative genomic analysis of protein kinase C (PKC) family identifies PKCiota as a biomarker and potential oncogene in ovarian carcinoma. Cancer Res 66: 4627–4635.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Muthuswamy laboratory for support and Lukas E Dow for helpful insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S K Muthuswamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aranda, V., Nolan, M. & Muthuswamy, S. Par complex in cancer: a regulator of normal cell polarity joins the dark side. Oncogene 27, 6878–6887 (2008). https://doi.org/10.1038/onc.2008.340

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.340

Keywords

This article is cited by

Search

Quick links