Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ligand-dependent ubiquitination of Smad3 is regulated by casein kinase 1 gamma 2, an inhibitor of TGF-β signaling

Abstract

Transforming growth factor-beta (TGF-β) elicits a variety of cellular activities primarily through a signaling cascade mediated by two key transcription factors, Smad2 and Smad3. Numerous regulatory mechanisms exist to control the activity of Smad3, thereby modulating the strength and specificity of TGF-β responses. In search for potential regulators of Smad3 through a yeast two-hybrid screen, we identified casein kinase 1 gamma 2 (CKIγ2) as a novel Smad3-interacting protein. In mammalian cells, CKIγ2 selectively and constitutively binds Smad3 but not Smad1, -2 or -4. Functionally, CKIγ2 inhibits Smad3-mediated TGF-β responses including induction of target genes and cell growth arrest, and this inhibition is dependent on CKIγ2 kinase activity. Mechanistically, CKIγ2 does not affect the basal levels of Smad proteins or activity of the receptors. Rather, CKIγ2 preferentially promotes the ubiquitination and degradation of activated Smad3 through direct phosphorylation of its MH2 domain at Ser418. Importantly, mutation of Ser418 to alanine or aspartic acid causes an increase or decrease of Smad3 activity, respectively, in the presence of TGF-β. CKIγ2 is the first kinase known to mark activated Smad3 for destruction. Given its negative function in TGF-β signaling and its reported overexpression in human cancers, CKIγ2 may act as an oncoprotein during tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bierie B, Moses HL . (2006). Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6: 506–520.

    Article  CAS  Google Scholar 

  • Davidson G, Wu W, Shen J, Bilic J, Fenger U, Stannek P et al. (2005). Casein kinase 1 gamma couples Wnt receptor activation to cytoplasmic signal transduction. Nature 438: 867–872.

    Article  CAS  Google Scholar 

  • Dennler S, Huet S, Gauthier JM . (1999). A short amino-acid sequence in MH1 domain is responsible for functional differences between Smad2 and Smad3. Oncogene 18: 1643–1648.

    Article  CAS  Google Scholar 

  • Dunn NR, Koonce CH, Anderson DC, Islam A, Bikoff EK, Robertson EJ . (2005). Mice exclusively expressing the short isoform of Smad2 develop normally and are viable and fertile. Genes Dev 19: 152–163.

    Article  CAS  Google Scholar 

  • Fukuchi M, Imamura T, Chiba T, Ebisawa T, Kawabata M, Tanaka K et al. (2001). Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins. Mol Biol Cell 12: 1431–1443.

    Article  CAS  Google Scholar 

  • Gross SD, Anderson RA . (1998). Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family. Cell Signal 10: 699–711.

    Article  CAS  Google Scholar 

  • Guo X, Ramirez A, Waddell DS, Li Z, Liu X, Wang X-F . (2008). Axin and GSK3-β control Smad3 protein stability and modulate TGF-β signaling. Genes Dev 22: 106–120.

    Article  CAS  Google Scholar 

  • Heldin C-H, Miyazono K, Dijke PT . (1997). TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390: 465.

    Article  CAS  Google Scholar 

  • Heldin CH, ten Dijke P . (1999). SMAD destruction turns off signalling. Nat Cell Biol 1: E195–E197.

    Article  CAS  Google Scholar 

  • Imoto S, Sugiyama K, Sekine Y, Matsuda T . (2005). Roles for lysine residues of the MH2 domain of Smad3 in transforming growth factor-beta signaling. FEBS Lett 579: 2853–2862.

    Article  CAS  Google Scholar 

  • Inman GJ, Nicolas FJ, Hill CS . (2002). Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell 10: 283–294.

    Article  CAS  Google Scholar 

  • Izzi L, Attisano L . (2006). Ubiquitin-dependent regulation of TGF signaling in cancer. Neoplasia 8: 677–688.

    Article  CAS  Google Scholar 

  • Jayaraman L, Massagué J . (2000). Distinct oligomeric states of SMAD proteins in the transforming growth factor-beta pathway. J Biol Chem 275: 40710–40717.

    Article  CAS  Google Scholar 

  • Kitabayashi AN, Kusuda J, Hirai M, Hashimoto K . (1997). Cloning and chromosomal mapping of human casein kinase I gamma 2 (CSNK1G2). Genomics 46: 133–137.

    Article  CAS  Google Scholar 

  • Knippschild U, Gocht A, Wolff S, Huber N, Lohler J, Stoter M . (2005). The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal 17: 675–689.

    Article  CAS  Google Scholar 

  • Komuro A, Imamura T, Saitoh M, Yoshida Y, Yamori T, Miyazono K et al. (2004). Negative regulation of transforming growth factor-[beta] (TGF-[beta]) signaling by WW domain-containing protein 1 (WWP1). Oncogene 23: 6914–6923.

    Article  CAS  Google Scholar 

  • Kretschmer A, Moepert K, Dames S, Sternberger M, Kaufmann J, Klippel A . (2003). Differential regulation of TGF-beta signaling through Smad2, Smad3 and Smad4. Oncogene 22: 6748–6763.

    Article  CAS  Google Scholar 

  • Liberati NT, Datto MB, Frederick JP, Shen X, Wong C, Rougier-Chapman EM et al. (1999). Smads bind directly to the Jun family of AP-1 transcription factors. Proc Natl Acad Sci USA 96: 4844–4849.

    Article  CAS  Google Scholar 

  • Liberati NT, Moniwa M, Borton AJ, Davie JR, Wang XF . (2001). An essential role for Mad homology domain 1 in the association of Smad3 with histone deacetylase activity. J Biol Chem 276: 22595–22603.

    Article  CAS  Google Scholar 

  • Lin X, Duan X, Liang YY, Su Y, Wrighton KH, Long J et al. (2006). PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell 125: 915–928.

    Article  CAS  Google Scholar 

  • Lin X, Liang M, Feng X-H . (2000). Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem 275: 36818–36822.

    Article  CAS  Google Scholar 

  • Liu C, Li Y, Semenov M, Han C, Baeg G-H, Tan Y et al. (2002). Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108: 837–847.

    Article  CAS  Google Scholar 

  • Lo RS, Massagué J . (1999). Ubiquitin-dependent degradation of TGF-beta-activated Smad2. Nat Cell Biol 1: 472–478.

    Article  CAS  Google Scholar 

  • Long J, Wang G, Matsuura I, He D, Liu F . (2004). Activation of Smad transcriptional activity by protein inhibitor of activated STAT3 (PIAS3). Proc Natl Acad Sci USA 101: 99–104.

    Article  CAS  Google Scholar 

  • Massagué J . (2000). How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1: 169–178.

    Article  Google Scholar 

  • Massagué J, Blain SW, Lo RS . (2000). TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103: 295–309.

    Article  Google Scholar 

  • Massagué J, Seoane J, Wotton D . (2005). Smad transcription factors. Genes Dev 19: 2783–2810.

    Article  Google Scholar 

  • Peters JM, McKay RM, McKay JP, Graff JM . (1999). Casein kinase I transduces Wnt signals. Nature 401: 345–350.

    Article  CAS  Google Scholar 

  • Piek E, Ju WJ, Heyer J, Escalante-Alcalde D, Stewart CL, Weinstein M et al. (2001). Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts. J Biol Chem 276: 19945–19953.

    Article  CAS  Google Scholar 

  • Poncelet A-C, Schnaper HW, Tan R, Liu Y, Runyan CE . (2007). Cell phenotype-specific down-regulation of Smad3 involves decreased gene activation as well as protein degradation. J Biol Chem 282: 15534–15540.

    Article  CAS  Google Scholar 

  • Price MA . (2006). CKI, there's more than one: casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev 20: 399–410.

    Article  CAS  Google Scholar 

  • Price MA, Kalderon D . (2002). Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Cell 108: 823–835.

    Article  CAS  Google Scholar 

  • Reguly T, Wrana JL . (2003). In or out? The dynamics of Smad nucleocytoplasmic shuttling. Trends Cell Biol 13: 216–220.

    Article  CAS  Google Scholar 

  • Roberts AB, Tian F, Byfield SD, Stuelten C, Ooshima A, Saika S et al. (2006). Smad3 is key to TGF-[beta]-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev 17: 19–27.

    Article  CAS  Google Scholar 

  • Schilling SH, Datto MB, Wang XF . (2006). A phosphatase controls the fate of receptor-regulated Smads. Cell 125: 838–840.

    Article  CAS  Google Scholar 

  • Shi Y, Massagué J . (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113: 685–700.

    Article  CAS  Google Scholar 

  • Shi Y, Wang YF, Jayaraman L, Yang H, Massagué J, Pavletich NP . (1998). Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling. Cell 94: 585–594.

    Article  CAS  Google Scholar 

  • Schmierer B, Hill CS . (2005). Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads. Mol Cell Biol 25: 9845–9858.

    Article  CAS  Google Scholar 

  • Vielhaber E, Virshup DM . (2001). Casein kinase I: from obscurity to center stage. IUBMB Life 51: 73–78.

    Article  CAS  Google Scholar 

  • Waddell DS, Liberati NT, Guo X, Frederick JP, Wang X-F . (2004). Casein kinase Iɛ plays a functional role in the transforming growth factor-β signaling pathway. J Biol Chem 279: 29236–29246.

    Article  CAS  Google Scholar 

  • Wang W, Koka V, Lan HY . (2005). Transforming growth factor-β and Smad signalling in kidney diseases. Review article. Nephrology 10: 48–56.

    Article  Google Scholar 

  • Weinstein M, Yang X, Deng C . (2000). Functions of mammalian Smad genes as revealed by targeted gene disruption in mice. Cytokine Growth Factor Rev 11: 49–58.

    Article  CAS  Google Scholar 

  • Xu L, Kang Y, Col S, Massagué J . (2002). Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFβ signaling complexes in the cytoplasm and nucleus. Mol Cell 10: 271–282.

    Article  CAS  Google Scholar 

  • Yagi K, Goto D, Hamamoto T, Takenoshita S, Kato M, Miyazono K . (1999). Alternatively spliced variant of Smad2 lacking exon 3. Comparison with wild-type Smad2 and Smad3. J Biol Chem 274: 703–709.

    Article  CAS  Google Scholar 

  • Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R et al. (2005). A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438: 873–877.

    Article  CAS  Google Scholar 

  • Zhai L, Graves PR, Robinson LC, Italiano M, Culbertson MR, Rowles J et al. (1995). Casein kinase I gamma subfamily. Molecular cloning, expression, and characterization of three mammalian isoforms and complementation of defects in the Saccharomyces cerevisiae YCK genes. J Biol Chem 270: 12717–12724.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Jun Kusuda, Joan Massagué, Xin-Hua Feng, Rik Derynck, Jun-Lin Guan, James Woodgett and Anita Roberts for valuable reagents. We appreciate the Wang laboratory members for insightful scientific discussions and excellent technical support. We thank Natalie Ahn, Kathryn Resing and Will Old for MS facility and support. This work was supported by NIH grants DK064113 and GM083000 to X-F W, and an NIH Grant GM083172 to XL. DSW was supported by Department of Defense Breast Cancer Predoctoral Fellowship DAMD17-00-1-0299. NTL was supported by a National Science Foundation Predoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X-F Wang.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X., Waddell, D., Wang, W. et al. Ligand-dependent ubiquitination of Smad3 is regulated by casein kinase 1 gamma 2, an inhibitor of TGF-β signaling. Oncogene 27, 7235–7247 (2008). https://doi.org/10.1038/onc.2008.337

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.337

Keywords

This article is cited by

Search

Quick links