Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Repression of E-cadherin by the polycomb group protein EZH2 in cancer

Abstract

Enhancer of zeste homolog 2 (EZH2) is a critical component of the polycomb-repressive complex 2 (PRC2), which is involved in gene silencing and histone H3 lysine 27 methylation. EZH2 has a master regulatory function in controlling such processes as stem cell differentiation, cell proliferation, early embryogenesis and X chromosome inactivation. Although benign epithelial cells express very low levels of EZH2, increased levels of EZH2 have been observed in aggressive solid tumors such as those of the prostate, breast and bladder. The mechanism by which EZH2 mediates tumor aggressiveness is unclear. Here, we demonstrate that EZH2 mediates transcriptional silencing of the tumor suppressor gene E-cadherin by trimethylation of H3 lysine 27. Histone deacetylase inhibitors can prevent EZH2-mediated repression of E-cadherin and attenuate cell invasion, suggesting a possible mechanism that may be useful for the development of therapeutic treatments. Taken together, these observations provide a novel mechanism of E-cadherin regulation and establish a functional link between dysregulation of EZH2 and repression of E-cadherin during cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA et al. (2006). EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol 24: 268–273.

    Article  CAS  PubMed  Google Scholar 

  • Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84–89.

    Article  CAS  PubMed  Google Scholar 

  • Beke L, Nuytten M, Van Eynde A, Beullens M, Bollen M . (2007). The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene 26: 4590–4595.

    Article  CAS  PubMed  Google Scholar 

  • Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI et al. (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441: 349–353.

    Article  CAS  PubMed  Google Scholar 

  • Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K . (2006). Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20: 1123–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breuer RH, Snijders PJ, Smit EF, Sutedja TG, Sewalt RG, Otte AP et al. (2004). Increased expression of the EZH2 polycomb group gene in BMI-1-positive neoplastic cells during bronchial carcinogenesis. Neoplasia 6: 736–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant RJ, Cross NA, Eaton CL, Hamdy FC, Cunliffe VT . (2007). EZH2 promotes proliferation and invasiveness of prostate cancer cells. Prostate 67: 547–556.

    Article  CAS  PubMed  Google Scholar 

  • Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P et al. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298: 1039–1043.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Tu SW, Hsieh JT . (2005). Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J Biol Chem 280: 22437–22444.

    Article  CAS  PubMed  Google Scholar 

  • Damsky CH, Richa J, Solter D, Knudsen K, Buck CA . (1983). Identification and purification of a cell surface glycoprotein mediating intercellular adhesion in embryonic and adult tissue. Cell 34: 455–466.

    Article  CAS  PubMed  Google Scholar 

  • Day ML, Zhao X, Vallorosi CJ, Putzi M, Powell CT, Lin C et al. (1999). E-cadherin mediates aggregation-dependent survival of prostate and mammary epithelial cells through the retinoblastoma cell cycle control pathway. J Biol Chem 274: 9656–9664.

    Article  CAS  PubMed  Google Scholar 

  • Dorudi S, Hanby AM, Poulsom R, Northover J, Hart IR . (1995). Level of expression of E-cadherin mRNA in colorectal cancer correlates with clinical outcome. Br J Cancer 71: 614–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A et al. (1991). E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 113: 173–185.

    Article  CAS  PubMed  Google Scholar 

  • Frixen UH, Nagamine Y . (1993). Stimulation of urokinase-type plasminogen activator expression by blockage of E-cadherin-dependent cell-cell adhesion. Cancer Res 53: 3618–3623.

    CAS  PubMed  Google Scholar 

  • Fujii S, Ochiai A . (2008). Enhancer of zeste homolog 2 downregulates E-cadherin by mediating histone H3 methylation in gastric cancer cells. Cancer Sci 99: 738–746.

    Article  CAS  PubMed  Google Scholar 

  • Fujita Y, Krause G, Scheffner M, Zechner D, Leddy HE, Behrens J et al. (2002). Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 4: 222–231.

    Article  CAS  PubMed  Google Scholar 

  • Hajra KM, Chen DY, Fearon ER . (2002). The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62: 1613–1618.

    CAS  PubMed  Google Scholar 

  • Hajra KM, Ji X, Fearon ER . (1999). Extinction of E-cadherin expression in breast cancer via a dominant repression pathway acting on proximal promoter elements. Oncogene 18: 7274–7279.

    Article  CAS  PubMed  Google Scholar 

  • Halbleib JM, Nelson WJ . (2006). Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 20: 3199–3214.

    Article  CAS  PubMed  Google Scholar 

  • Haybittle JL, Blamey RW, Elston CW, Johnson J, Doyle PJ, Campbell FC et al. (1982). A prognostic index in primary breast cancer. Br J Cancer 45: 361–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirohashi S, Kanai Y . (2003). Cell adhesion system and human cancer morphogenesis. Cancer Sci 94: 575–581.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs JJ, van Lohuizen M . (1999). Cellular memory of transcriptional states by Polycomb-group proteins. Semin Cell Dev Biol 10: 227–235.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs JJ, van Lohuizen M . (2002). Polycomb repression: from cellular memory to cellular proliferation and cancer. Biochim Biophys Acta 1602: 151–161.

    CAS  PubMed  Google Scholar 

  • Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R et al. (2004). Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 18: 1592–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA et al. (2003). EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA 100: 11606–11611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C et al. (2008). Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 40: 741–750.

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi M, Baguet A, Martens J, Margueron R, Jenuwein T, Bix M . (2005). EZH2 and histone 3 trimethyl lysine 27 associated with Il4 and Il13 gene silencing in Th1 cells. J Biol Chem 280: 31470–31477.

    Article  CAS  PubMed  Google Scholar 

  • Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM et al. (2006). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125: 301–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer B, Johnson JP, Leitl F, Jauch KW, Heiss MM, Schildberg FW et al. (1993). E-cadherin expression in primary and metastatic gastric cancer: down-regulation correlates with cellular dedifferentiation and glandular disintegration. Cancer Res 53: 1690–1695.

    CAS  PubMed  Google Scholar 

  • Moll R, Mitze M, Frixen UH, Birchmeier W . (1993). Differential loss of E-cadherin expression in infiltrating ductal and lobular breast carcinomas. Am J Pathol 143: 1731–1742.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L et al. (2007). A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39: 237–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka H, Shiozaki H, Kobayashi K, Inoue M, Tahara H, Kobayashi T et al. (1993). Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer Res 53: 1696–1701.

    CAS  PubMed  Google Scholar 

  • Palacios F, Tushir JS, Fujita Y, D’Souza-Schorey C . (2005). Lysosomal targeting of E-cadherin: a unique mechanism for the downregulation of cell–cell adhesion during epithelial to mesenchymal transitions. Mol Cell Biol 25: 389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palacios J, Benito N, Pizarro A, Limeres MA, Suarez A, Cano A et al. (1995). Relationship between ERBB2 and E-cadherin expression in human breast cancer. Virchows Arch 427: 259–263.

    Article  CAS  PubMed  Google Scholar 

  • Peinado H, Ballestar E, Esteller M, Cano A . (2004). Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 24: 306–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierceall WE, Woodard AS, Morrow JS, Rimm D, Fearon ER . (1995). Frequent alterations in E-cadherin and alpha- and beta-catenin expression in human breast cancer cell lines. Oncogene 11: 1319–1326.

    CAS  PubMed  Google Scholar 

  • Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H et al. (2003). Role of histone H3 lysine 27 methylation in X inactivation. Science 300: 131–135.

    Article  CAS  PubMed  Google Scholar 

  • Rasbridge SA, Gillett CE, Sampson SA, Walsh FS, Millis RR . (1993). Epithelial (E-) and placental (P-) cadherin cell adhesion molecule expression in breast carcinoma. J Pathol 169: 245–250.

    Article  CAS  PubMed  Google Scholar 

  • Rhodes DR, Sanda MG, Otte AP, Chinnaiyan AM, Rubin MA . (2003). Multiplex biomarker approach for determining risk of prostate-specific antigen-defined recurrence of prostate cancer. J Natl Cancer Inst 95: 661–668.

    Article  CAS  PubMed  Google Scholar 

  • Rosen PP, Groshen S . (1990). Factors influencing survival and prognosis in early breast carcinoma (T1N0M0-T1N1M0). Assessment of 644 patients with median follow-up of 18 years. Surg Clin North Am 70: 937–962.

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Oda Y, Kawaguchi K, Sugimachi K, Yamamoto H, Tateishi N et al. (2004). E-cadherin mutation and Snail overexpression as alternative mechanisms of E-cadherin inactivation in synovial sarcoma. Oncogene 23: 8629–8638.

    Article  CAS  PubMed  Google Scholar 

  • Satijn DP, Otte AP . (1999). Polycomb group protein complexes: do different complexes regulate distinct target genes? Biochim Biophys Acta 1447: 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J et al. (2007). Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39: 232–236.

    Article  CAS  PubMed  Google Scholar 

  • Sparmann A, van Lohuizen M . (2006). Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6: 846–856.

    Article  CAS  PubMed  Google Scholar 

  • Sudo T, Utsunomiya T, Mimori K, Nagahara H, Ogawa K, Inoue H et al. (2005). Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma. Br J Cancer 92: 1754–1758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taghavi P, van Lohuizen M . (2006). Developmental biology: two paths to silence merge. Nature 439: 794–795.

    Article  CAS  PubMed  Google Scholar 

  • Takeno S, Noguchi T, Fumoto S, Kimura Y, Shibata T, Kawahara K . (2004). E-cadherin expression in patients with esophageal squamous cell carcinoma: promoter hypermethylation, Snail overexpression, and clinicopathologic implications. Am J Clin Pathol 122: 78–84.

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL et al. (2007). Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 21: 1050–1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolhuis B, de Wit E, Muijrers I, Teunissen H, Talhout W, van Steensel B et al. (2006). Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat Genet 38: 694–699.

    Article  CAS  PubMed  Google Scholar 

  • Umbas R, Isaacs WB, Bringuier PP, Schaafsma HE, Karthaus HF, Oosterhof GO et al. (1994). Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res 54: 3929–3933.

    CAS  PubMed  Google Scholar 

  • Umbas R, Isaacs WB, Bringuier PP, Xue Y, Debruyne FM, Schalken JA . (1997). Relation between aberrant alpha-catenin expression and loss of E-cadherin function in prostate cancer. Int J Cancer 74: 374–377.

    Article  CAS  PubMed  Google Scholar 

  • van der Vlag J, Otte AP . (1999). Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat Genet 23: 474–478.

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.

    Article  Google Scholar 

  • Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al. (2002). The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419: 624–629.

    Article  CAS  PubMed  Google Scholar 

  • Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C et al. (2006). The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439: 871–874.

    Article  CAS  PubMed  Google Scholar 

  • Weikert S, Christoph F, Kollermann J, Muller M, Schrader M, Miller K et al. (2005). Expression levels of the EZH2 polycomb transcriptional repressor correlate with aggressiveness and invasive potential of bladder carcinomas. Int J Mol Med 16: 349–353.

    CAS  PubMed  Google Scholar 

  • Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C et al. (2007). Epigenetic stem cell signature in cancer. Nat Genet 39: 157–158.

    Article  CAS  PubMed  Google Scholar 

  • Wijnhoven BP, Dinjens WN, Pignatelli M . (2000). E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg 87: 992–1005.

    Article  CAS  PubMed  Google Scholar 

  • Wu ZY, Zhan WH, Li JH, He YL, Wang JP, Lan P et al. (2005). Expression of E-cadherin in gastric carcinoma and its correlation with lymph node micrometastasis. World J Gastroenterol 11: 3139–3143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Cao Q, Mehra R, Laxman B, Yu J, Tomlins SA et al. (2007a). Integrative genomics analysis reveals silencing of beta-adrenergic signaling by polycomb in prostate cancer. Cancer Cell 12: 419–431.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Yu J, Rhodes DR, Tomlins SA, Cao X, Chen G et al. (2007b). A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 67: 10657–10663.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Eric Fearon for providing the E-cadherin promoter–reporter constructs. We thank Jill Granger for critically reading the paper and for her thoughtful suggestions. We thank R Kunkel for help in figure preparation and the staff of the Microscopy and Image Analyses laboratory at the University of Michigan for their assistance in the microscopic analyses employed in this study. We thank the University of Michigan Vector Core for virus generation. AMC is supported by a Burroughs Welcome Foundation Award in Clinical Translational Research. SAT is supported by the Medical Scientist Training Program and a Rackham Pre-doctoral Award. This research was supported in part by National Institutes of Health Grant RO1 CA97063 (to AMC); U01 CA111275 (to AMC); P50 CA69568 (to AMC); Department of Defense Grants PC040517 (to RM), PC051081 (to AMC and SV), PC060266 (to JY) and R01CA107469 (to CGK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Chinnaiyan.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Q., Yu, J., Dhanasekaran, S. et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27, 7274–7284 (2008). https://doi.org/10.1038/onc.2008.333

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.333

Keywords

This article is cited by

Search

Quick links