Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Androgen-induced programs for prostate epithelial growth and invasion arise in embryogenesis and are reactivated in cancer

Abstract

Cancer cells differentiate along specific lineages that largely determine their clinical and biologic behavior. Distinct cancer phenotypes from different cells and organs likely result from unique gene expression repertoires established in the embryo and maintained after malignant transformation. We used comprehensive gene expression analysis to examine this concept in the prostate, an organ with a tractable developmental program and a high propensity for cancer. We focused on gene expression in the murine prostate rudiment at three time points during the first 48 h of exposure to androgen, which initiates proliferation and invasion of prostate epithelial buds into surrounding urogenital sinus mesenchyme. Here, we show that androgen exposure regulates genes previously implicated in prostate carcinogenesis comprising pathways for the phosphatase and tensin homolog (PTEN), fibroblast growth factor (FGF)/mitogen-activated protein kinase (MAPK), and Wnt signaling along with cellular programs regulating such ‘hallmarks’ of cancer as angiogenesis, apoptosis, migration and proliferation. We found statistically significant evidence for novel androgen-induced gene regulation events that establish and/or maintain prostate cell fate. These include modulation of gene expression through microRNAs, expression of specific transcription factors, and regulation of their predicted targets. By querying public gene expression databases from other tissues, we found that rather than generally characterizing androgen exposure or epithelial budding, the early prostate development program more closely resembles the program for human prostate cancer. Most importantly, early androgen-regulated genes and functional themes associated with prostate development were highly enriched in contrasts between increasingly lethal forms of prostate cancer, confirming a ‘reactivation’ of embryonic pathways for proliferation and invasion in prostate cancer progression. Among the genes with the most significant links to the development and cancer, we highlight coordinate induction of the transcription factor Sox9 and suppression of the proapoptotic phospholipid-binding protein Annexin A1 that link early prostate development to early prostate carcinogenesis. These results credential early prostate development as a reliable and valid model system for the investigation of genes and pathways that drive prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Acevedo VD, Gangula RD, Freeman KW, Li R, Zhang Y, Wang F et al. (2007). Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell 12: 559–571.

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Mungall CJ, Lewis SE . (2003). Ontologies for biologists: a community model for the annotation of genomic data. Cold Spring Harb Symp Quant Biol 68: 227–235.

    Article  CAS  PubMed  Google Scholar 

  • Bailey P, Cushing H . (1925). Medulloblastoma cerbelli: a common type of midcerebellar glioma of childhood. Arch Neurol Psychiatry 14: 192–223.

    Article  Google Scholar 

  • Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I . (2001). Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125: 279–284.

    Article  CAS  PubMed  Google Scholar 

  • Berman DM, Desai N, Wang X, Karhadkar SS, Reynon M, Abate-Shen C et al. (2004). Roles for Hedgehog signaling in androgen production and prostate ductal morphogenesis. Dev Biol 267: 387–398.

    Article  CAS  PubMed  Google Scholar 

  • Bernards R, Weinberg RA . (2002). A progression puzzle. Nature 418: 823.

    Article  CAS  PubMed  Google Scholar 

  • Bhatia-Gaur R, Donjacour AA, Sciavolino PJ, Kim M, Desai N, Young P et al. (1999). Roles for Nkx3.1 in prostate development and cancer. Genes Dev 13: 966–977.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bivalacqua TJ, Deng W, Kendirci M, Usta MF, Robinson C, Taylor BK et al. (2007). Mesenchymal stem cells alone or ex vivo gene modified with endothelial nitric oxide synthase reverse age-associated erectile dysfunction. Am J Physiol Heart Circ Physiol 292: H1278–H1290.

    Article  CAS  PubMed  Google Scholar 

  • Bostwick DG, Qian J . (2004). High-grade prostatic intraepithelial neoplasia. Mod Pathol 17: 360–379.

    Article  PubMed  Google Scholar 

  • Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P et al. (1999). The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18: 2883–2891.

    Article  CAS  PubMed  Google Scholar 

  • Cunha GR, Cooke PS, Kurita T . (2004). Role of stromal-epithelial interactions in hormonal responses. Arch Histol Cytol 67: 417–434.

    Article  CAS  PubMed  Google Scholar 

  • Donjacour AA, Thomson AA, Cunha GR . (2003). FGF-10 plays an essential role in the growth of the fetal prostate. Dev Biol 261: 39–54.

    Article  CAS  PubMed  Google Scholar 

  • Drews U, Sulak O, Oppitz M . (2001). Immunohistochemical localisation of androgen receptor during sex-specific morphogenesis in the fetal mouse. Histochem Cell Biol 116: 427–439.

    Article  CAS  PubMed  Google Scholar 

  • English HF, Santen RJ, Isaacs JT . (1987). Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate 11: 229–242.

    Article  CAS  PubMed  Google Scholar 

  • Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM et al. (1986). A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643–646.

    Article  CAS  PubMed  Google Scholar 

  • Garraway LA, Sellers WR . (2006). Lineage dependency and lineage-survival oncogenes in human cancer. Nat Rev Cancer 6: 593–602.

    Article  CAS  PubMed  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Ihaka R, Gentleman R . (1996). R: A language for data analysis and graphics. J Comput Graph Stat 5: 299–314.

    Google Scholar 

  • Ii M, Yamamoto H, Adachi Y, Maruyama Y, Shinomura Y . (2006). Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med (Maywood) 231: 20–27.

    Article  CAS  Google Scholar 

  • Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC et al. (2005). Multiple-laboratory comparison of microarray platforms. Nat Methods 2: 345–350.

    Article  CAS  PubMed  Google Scholar 

  • Joesting MS, Perrin S, Elenbaas B, Fawell SE, Rubin JS, Franco OE et al. (2005). Identification of SFRP1 as a candidate mediator of stromal-to-epithelial signaling in prostate cancer. Cancer Res 65: 10423–10430.

    Article  CAS  PubMed  Google Scholar 

  • Jost A . (1968). Full or partial maturation of fetal endocrine systems under pituitary control. Perspect Biol Med 11: 371.

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M . (2004). The KEGG resource for deciphering the genome. Nucleic Acids Res 32: D277–D280.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang JS, Calvo BF, Maygarden SJ, Caskey LS, Mohler JL, Ornstein DK . (2002). Dysregulation of annexin I protein expression in high-grade prostatic intraepithelial neoplasia and prostate cancer. Clin Cancer Res 8: 117–123.

    CAS  PubMed  Google Scholar 

  • Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3: 537–549.

    Article  CAS  PubMed  Google Scholar 

  • Kho AT, Zhao Q, Cai Z, Butte AJ, Kim JY, Pomeroy SL et al. (2004). Conserved mechanisms across development and tumorigenesis revealed by a mouse development perspective of human cancers. Genes Dev 18: 629–640.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kousteni S, Bellido T, Plotkin LI, O’Brien CA, Bodenner DL, Han L et al. (2001). Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104: 719–730.

    CAS  PubMed  Google Scholar 

  • Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K et al. (2004). Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 101: 811–816.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON . (2007). Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci USA 104: 181–186.

    Article  CAS  PubMed  Google Scholar 

  • Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J . (2005). Rheb binds and regulates the mTOR kinase. Curr Biol 15: 702–713.

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Qian J, Izvolsky KI, Cardoso WV . (2004). Global analysis of genes differentially expressed in branching and non-branching regions of the mouse embryonic lung. Dev Biol 273: 418–435.

    Article  CAS  PubMed  Google Scholar 

  • Manolagas SC, Kousteni S, Jilka RL . (2002). Sex steroids and bone. Recent Prog Horm Res 57: 385–409.

    Article  CAS  PubMed  Google Scholar 

  • McMenamin ME, Soung P, Perera S, Kaplan I, Loda M, Sellers WR . (1999). Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 59: 4291–4296.

    CAS  PubMed  Google Scholar 

  • Memarzadeh S, Xin L, Mulholland DJ, Mansukhani A, Wu H, Teitell MA et al. (2007). Enhanced paracrine FGF10 expression promotes formation of multifocal prostate adenocarcinoma and an increase in epithelial androgen receptor. Cancer Cell 12: 572–585.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohammadi M, Olsen SK, Ibrahimi OA . (2005). Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 16: 107–137.

    Article  CAS  PubMed  Google Scholar 

  • Nam JS, Park E, Turcotte TJ, Palencia S, Zhan X, Lee J et al. (2007). Mouse R-spondin2 is required for apical ectodermal ridge maintenance in the hindlimb. Dev Biol 311: 124–135.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nusse R . (2005). Wnt signaling in disease and in development. Cell Res 15: 28–32.

    Article  CAS  PubMed  Google Scholar 

  • Olsen SK, Garbi M, Zampieri N, Eliseenkova AV, Ornitz DM, Goldfarb M et al. (2003). Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs. J Biol Chem 278: 34226–34236.

    Article  CAS  PubMed  Google Scholar 

  • Ornstein DK, Tyson DR . (2006). Proteomics for the identification of new prostate cancer biomarkers. Urol Oncol 24: 231–236.

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M et al. (2001). Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 98: 15149–15154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scher HI, Sawyers CL . (2005). Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 23: 8253–8261.

    Article  CAS  PubMed  Google Scholar 

  • Shen MM, Abate-Shen C . (2007). Pten inactivation and the emergence of androgen-independent prostate cancer. Cancer Res 67: 6535–6538.

    Article  CAS  PubMed  Google Scholar 

  • Smyth GK . (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: article3 (e-pub 2004 Feb 12).

    Article  Google Scholar 

  • Stefani G, Slack FJ . (2008). Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9: 219.

    Article  CAS  PubMed  Google Scholar 

  • Stehelin D, Varmus HE, Bishop JM, Vogt PK . (1976). DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260: 170–173.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102: 15545–15550.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomsen MK, Butler CM, Shen MM, Swain A . (2008). Sox9 is required for prostate development. Dev Biol 316: 302–311.

    Article  CAS  PubMed  Google Scholar 

  • Thomson AA . (2001). Role of androgens and fibroblast growth factors in prostatic development. Reproduction 121: 187–195.

    Article  CAS  PubMed  Google Scholar 

  • Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM et al. (2007). Integrative molecular concept modeling of prostate cancer progression. Nat Genet 39: 41–51.

    Article  CAS  PubMed  Google Scholar 

  • Treister NS, Richards SM, Lombardi MJ, Rowley P, Jensen RV, Sullivan DA . (2005). Sex-related differences in gene expression in salivary glands of BALB/c mice. J Dent Res 84: 160–165.

    Article  CAS  PubMed  Google Scholar 

  • Verras M, Sun Z . (2006). Roles and regulation of Wnt signaling and beta-catenin in prostate cancer. Cancer Lett 237: 22–32.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, McKnight NC, Zhang T, Lu ML, Balk SP, Yuan X . (2007a). SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells. Cancer Res 67: 528–536.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J et al. (2003). Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4: 209–221.

    Article  CAS  PubMed  Google Scholar 

  • Wang XD, Wang BE, Soriano R, Zha J, Zhang Z, Modrusan Z et al. (2007b). Expression profiling of the mouse prostate after castration and hormone replacement: implication of H-cadherin in prostate tumorigenesis. Differentiation 75: 219–234.

    Article  CAS  PubMed  Google Scholar 

  • Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R et al. (2007). Characterizing the cancer genome in lung adenocarcinoma. Nature 450: 893–898.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson JD, Griffin JE, George FW . (1980). Sexual differentiation: early hormone synthesis and action. Biol Reprod 22: 9.

    Article  CAS  PubMed  Google Scholar 

  • Xin L, Ide H, Kim Y, Dubey P, Witte ON . (2003). In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. Proc Natl Acad Sci USA 100 (Suppl 1): 11896–11903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin L, Lawson DA, Witte ON . (2005). The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA 102: 6942–6947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Lowey J, Wiklund F, Sun J, Lindmark F, Hsu FC et al. (2005). The interaction of four genes in the inflammation pathway significantly predicts prostate cancer risk. Cancer Epidemiol Biomarkers Prev 14: 2563–2568.

    Article  CAS  PubMed  Google Scholar 

  • Yeager N, Brewer C, Cai KQ, Xu XX, Di Cristofano A . (2008). Mammalian target of rapamycin is the key effector of phosphatidylinositol-3-OH-initiated proliferative signals in the thyroid follicular epithelium. Cancer Res 68: 444.

    Article  CAS  PubMed  Google Scholar 

  • Zeng L, Kyprianou N . (2005). Apoptotic regulators in prostatic intraepithelial neoplasia (PIN): value in prostate cancer detection and prevention. Prostate Cancer Prostatic Dis 8: 7–13.

    Article  CAS  PubMed  Google Scholar 

  • Zhang TJ, Hoffman BG, Ruiz de Algara T, Helgason CD . (2006). SAGE reveals expression of Wnt signalling pathway members during mouse prostate development. Gene Expr Patterns 6: 310–324.

    Article  CAS  PubMed  Google Scholar 

  • Zwick E, Bange J, Ullrich A . (2002). Receptor tyrosine kinases as targets for anticancer drugs. Trends Mol Med 8: 17–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W Matsui and N Watkins for comments on the manuscript, A DeMarzo and J Epstein for TMAs and YQ Chen for prostate regeneration data. These studies were funded by the Evensen Family, Passano and Patrick C Walsh Prostate Cancer Foundations, and NIH5K08DK059375 (DB) NIHK08 DK081019 (EMS), NIH5P30CA06973-39 (GP) and NSF034211 (GP and LM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D M Berman.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaeffer, E., Marchionni, L., Huang, Z. et al. Androgen-induced programs for prostate epithelial growth and invasion arise in embryogenesis and are reactivated in cancer. Oncogene 27, 7180–7191 (2008). https://doi.org/10.1038/onc.2008.327

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.327

Keywords

This article is cited by

Search

Quick links