Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The atypical Rho GTPase RhoBTB2 is required for expression of the chemokine CXCL14 in normal and cancerous epithelial cells


The Rho family of small GTPases control cell migration, cell invasion and cell cycle. Many of these processes are perturbed in cancer and several family members show altered expression in a number of tumor types. RhoBTB2/DBC2 is an atypical member of this family of signaling proteins, containing two BTB domains in addition to its conserved Rho GTPase domain. RhoBTB2 is mutated, deleted or silenced in a large percentage of breast and lung cancers; however, the functional consequences of this loss are unclear. Here we use RNA interference in primary human epithelial cells to mimic the loss of RhoBTB2 seen in cancer cells. Through microarray analysis of global gene expression, we show that loss of RhoBTB2 results in downregulation of CXCL14—a chemokine that controls leukocyte migration and angiogenesis, and whose expression is lost through unknown mechanisms in a wide range of epithelial cancers. Loss of RhoBTB2 expression correlates with loss of CXCL14 secretion by head and neck squamous cell carcinoma cell lines, whereas reintroduction of RhoBTB2 restores CXCL14 secretion. Our studies identify CXCL14 as a gene target of RhoBTB2 and support downregulation of CXCL14 as a functional outcome of RhoBTB2 loss in cancer.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Accession codes




  • Aspenstrom P, Fransson A, Saras J . (2004). Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J 377: 327–337.

    Article  Google Scholar 

  • Bardwell VJ, Treisman R . (1994). The POZ domain: a conserved protein–protein interaction motif. Genes Dev 8: 1664–1677.

    Article  CAS  Google Scholar 

  • Beder LB, Gunduz M, Ouchida M, Gunduz E, Sakai A, Fukushima K et al. (2006). Identification of a candidate tumor suppressor gene RHOBTB1 located at a novel allelic loss region 10q21 in head and neck cancer. J Cancer Res Clin Oncol 132: 19–27.

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y . (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statis Soc Ser B 57: 289–300.

    Google Scholar 

  • Chang FK, Sato N, Kobayashi-Simorowski N, Yoshihara T, Meth JL, Hamaguchi M . (2006). DBC2 is essential for transporting vesicular stomatitis virus glycoprotein. J Mol Biol 364: 302–308.

    Article  CAS  Google Scholar 

  • Clark EA, Golub TR, Lander ES, Hynes RO . (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406: 532–535.

    Article  CAS  Google Scholar 

  • Demaison C, Parsley K, Brouns G, Scherr M, Battmer K, Kinnon C et al. (2002). High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency (correction of imunodeficiency) virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 13: 803–813.

    Article  CAS  Google Scholar 

  • Frederick MJ, Henderson Y, Xu X, Deavers MT, Sahin AA, Wu H et al. (2000). In vivo expression of the novel CXC chemokine BRAK in normal and cancerous human tissue. Am J Pathol 156: 1937–1950.

    Article  CAS  Google Scholar 

  • Gautier L, Cope L, Bolstad BM, Irizarry RA . (2004). affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20: 307–315.

    Article  CAS  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.

    Article  Google Scholar 

  • Hamaguchi M, Meth JL, von Klitzing C, Wei W, Esposito D, Rodgers L et al. (2002). DBC2, a candidate for a tumor suppressor gene involved in breast cancer. Proc Natl Acad Sci USA 99: 13647–13652.

    Article  CAS  Google Scholar 

  • Hromas R, Broxmeyer HE, Kim C, Nakshatri H, Christopherson K, Azam M et al. (1999). Cloning of BRAK, a novel divergent CXC chemokine preferentially expressed in normal versus malignant cells. Biochem Biophys Res Commun 255: 703–706.

    Article  CAS  Google Scholar 

  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264.

    Article  Google Scholar 

  • Kelly KF, Daniel JM . (2006). POZ for effect—POZ-ZF transcription factors in cancer and development. Trends Cell Biol 16: 578–587.

    Article  CAS  Google Scholar 

  • Knowles MA, Aveyard JS, Taylor CF, Harnden P, Bass S . (2005). Mutation analysis of the 8p candidate tumour suppressor genes DBC2 (RHOBTB2) and LZTS1 in bladder cancer. Cancer Lett 225: 121–130.

    Article  CAS  Google Scholar 

  • Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T et al. (2004). Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24: 7130–7139.

    Article  CAS  Google Scholar 

  • Kurth I, Willimann K, Schaerli P, Hunziker T, Clark-Lewis I, Moser B . (2001). Monocyte selectivity and tissue localization suggests a role for breast and kidney-expressed chemokine (BRAK) in macrophage development. J Exp Med 194: 855–861.

    Article  CAS  Google Scholar 

  • Ohadi M, Totonchi M, Maguire P, Lindblom A, Habibi R, Alavi BA et al. (2007). Mutation analysis of the DBC2 gene in sporadic and familial breast cancer. Acta Oncol 46: 770–772.

    Article  CAS  Google Scholar 

  • Pasqualucci L, Bereschenko O, Niu H, Klein U, Basso K, Guglielmino R et al. (2003). Molecular pathogenesis of non-Hodgkin's lymphoma: the role of Bcl-6. Leuk Lymphoma 44: S5–S12.

    Article  CAS  Google Scholar 

  • Perez-Torrado R, Yamada D, Defossez P-A . (2006). Born to bind: the BTB protein–protein interaction domain. BioEssays 28: 1194–1202.

    Article  CAS  Google Scholar 

  • Prime SS, Eveson JW, Stone AM, Huntley SP, Davies M, Paterson IC et al. (2004). Metastatic dissemination of human malignant oral keratinocyte cell lines following orthotopic transplantation reflects response to TGF-beta 1. J Pathol 203: 927–932.

    Article  CAS  Google Scholar 

  • Ramos S, Khademi F, Somesh BP, Rivero F . (2002). Genomic organization and expression profile of the small GTPases of the RhoBTB family in human and mouse. Gene 298: 147–157.

    Article  CAS  Google Scholar 

  • Redner RL . (2002). Variations on a theme: the alternate translocations in APL. Leukemia 16: 1927–1932.

    Article  CAS  Google Scholar 

  • Ridley A . (2004). Rho proteins and cancer. Breast Cancer Res Treat 84: 13–19.

    Article  CAS  Google Scholar 

  • Ridley AJ . (2006). Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16: 522–529.

    Article  CAS  Google Scholar 

  • Rivero F, Dislich H, Glockner G, Noegel AA . (2001). The Dictyostelium discoideum family of Rho-related proteins. Nucleic Acids Res 29: 1068–1079.

    Article  CAS  Google Scholar 

  • Sahai E, Marshall CJ . (2002). RHO-GTPases and cancer. Nat Rev Cancer 2: 133–142.

    Article  Google Scholar 

  • Schaerli P, Willimann K, Ebert LM, Walz A, Moser B . (2005). Cutaneous CXCL14 targets blood precursors to epidermal niches for Langerhans cell differentiation. Immunity 23: 331–342.

    Article  CAS  Google Scholar 

  • Schwarze R, DePrimo SE, Grabert LM, Fu VX, Brooks JD, Jarrard DF . (2002). Novel pathways associated with bypassing cellular senescence in human prostate epithelial cells. J Biol Chem 277: 14877–14883.

    Article  CAS  Google Scholar 

  • Shellenberger TD, Wang M, Gujrati M, Jayakumar A, Strieter RM, Burdick MD et al. (2004). BRAK/CXCL14 is a potent inhibitor of angiogenesis and a chemotactic factor for immature dendritic cells. Cancer Res 64: 8262–8270.

    Article  CAS  Google Scholar 

  • Shurin GV, Ferris RL, Tourkova IL, Perez L, Lokshin A, Balkir L et al. (2005). Loss of new chemokine CXCL14 in tumor tissue is associated with low infiltration by dendritic cells (DC), while restoration of human CXCL14 expression in tumor cells causes attraction of DC both in vitro and in vivo. J Immunol 174: 5490–5498.

    Article  CAS  Google Scholar 

  • Siripurapu V, Meth J, Kobayashi N, Hamaguchi M . (2005). DBC2 significantly influences cell-cycle, apoptosis, cytoskeleton and membrane-trafficking pathways. J Mol Biol 346: 83–89.

    Article  CAS  Google Scholar 

  • Smyth GK . (2005). Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (eds). Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer: New York. pp 397–420.

    Chapter  Google Scholar 

  • Starnes T, Rasila KK, Robertson MJ, Brahmi Z, Dahl R, Christopherson K et al. (2006). The chemokine CXCL14 (BRAK) stimulates activated NK cell migration: implications for the downregulation of CXCL14 in malignancy. Exp Hematol 34: 1101–1105.

    Article  CAS  Google Scholar 

  • Wilkins A, Ping Q, Carpenter CL . (2004). RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex. Genes Dev 18: 856–861.

    Article  CAS  Google Scholar 

  • Yang L, Carbone DP . (2004). Tumor–host immune interactions and dendritic cell dysfunction. Adv Cancer Res 92: 13–27.

    Article  CAS  Google Scholar 

Download references


We thank Ian Paterson for providing the HNSCC cell lines and Adrian Thrasher for the provision of lentiviral reagents. We particularly thank James Doherty, who provided initial analysis of the microarray data. This work was supported by a grant awarded to HM by Cancer Research UK.

Author information

Authors and Affiliations


Corresponding author

Correspondence to H Mellor.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McKinnon, C., Lygoe, K., Skelton, L. et al. The atypical Rho GTPase RhoBTB2 is required for expression of the chemokine CXCL14 in normal and cancerous epithelial cells. Oncogene 27, 6856–6865 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Rho GTPase
  • BTB domain
  • microarray
  • cancer
  • tumor microenvironment
  • chemokine

This article is cited by


Quick links