Abstract
BCL-2 was the first anti-death gene discovered, a milestone with far reaching implications for tumor biology. Multiple members of the human Bcl-2 family of apoptosis-regulating proteins have been identified, including six antiapoptotic, three structurally similar proapoptotic proteins and several structurally diverse proapoptotic interacting proteins that operate as upstream agonists or antagonists. These proteins, in turn, are regulated through myriad post-translational modifications and interactions with other proteins. Bcl-2-family proteins regulate all major types of cell death, including apoptosis, necrosis and autophagy, thus operating as nodal points at the convergence of multiple pathways with broad relevance to oncology. Experimental therapies targeting Bcl-2-family mRNAs or proteins are currently in clinical testing, raising hopes that a new class of anticancer drugs may soon be available.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 50 print issues and online access
$259.00 per year
only $5.18 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Aita VM, Liang XH, Murty VV, Pincus DL, Yu W, Cayanis E et al. (1999). Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59: 59–65.
Baehrecke EH . (2005). Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6: 505–510.
Becattini B, Kitada S, Leone M, Monosov E, Chandler S, Dayong Z et al. (2004). Rational design and real time in-cell detection of the pro-apoptotic activity of a novel compound targeting Bcl-Xl. Chem Biol 11: 389–395.
Bedikian AY, Millward M, Pehamberger H, Conry R, Gore M, Trefzer U et al. (2006). Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol 24: 4738–4745.
Benhar M, Forrester MT, Stamler JS . (2006). Nitrosative stress in the ER: a new role for S-nitrosylation in neurodegenerative diseases. ACS Chem Biol 1: 355–358.
Bernardi P, Krauskopf A, Basson E, Petronilli V, Blachly-Dyson E, Di Lisa F et al. (2006). The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 273: 2077–2099.
Bialik S, Kimchi A . (2004). DAP-kinase as a target for drug design in cancer and diseases associated with accelerated cell death. Semin Cancer Biol 14: 283–294.
Bivona TG, Quatela SE, Bodemann BO, Ahearn IM, Soskis MJ, Mor A et al. (2006). PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol Cell 21: 481–493.
Blais JD, Filipenko V, Bi M, Harding HP, Ron D, Koumenis C et al. (2004). Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol Cell Biol 24: 7469–7482.
Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC . (2003). Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22: 8608–8618.
Brousset P, Krajewski S, Meggetto F, Laurent G, Pris J, Delsol G et al. (1996). Frequent expression of the cell death-inducing gene Bax in Reed-Sternberg cells of Hodgkin's disease. Blood 87: 2470–2475.
Bruey JM, Bruey-Sedano N, Luciano F, Zhai D, Balpai R, Xu C et al. (2007). Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell 129: 45–56.
Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al. (2005). A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353: 1793–1801.
Chen M, He H, Zhan S, Krajewski S, Reed JC, Gottlieb RA . (2001). Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem 276: 30724–30728.
Cheng E, Clem R, Ravi R, Kirsch D, Kastan M, Bedi A et al. (1997). Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278: 1966–1968.
Chipuk JE, Green DR . (2008). How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18: 157–164.
Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303: 1010–1014.
Chittenden T, Flemington C, Houghton AB, Ebb RG, Gallo GJ, Elangovan B et al. (1995). A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J 14: 5589–5596.
Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Nat Acad Sci USA 102: 13944–13949.
Cory S, Huang DC, Adams JM . (2003). The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22: 8590–8607.
Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz Jr LA, Sjoblom T et al. (2006). The colorectal microRNAome. Proc Natl Acad Sci USA 103: 3687–3692.
Daneshmand S, Quek ML, Lin E, Lee C, Cote RJ, Hawes D et al. (2007). Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival. Hum Pathol 38: 1547–1552.
Danial NN, Walensky LD, Zhang CY, Choi CS, Fisher JK, Molina AJ et al. (2008). Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nat Med 14: 144–153.
Debatin KM, Poncet D, Kroemer G . (2002). Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene 21: 8786–8803.
Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T et al. (2001). Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nature Cell Biol 3: 173–182.
Deng X, Gao F, Flagg T, Anderson J, May WS . (2006). Bcl2's flexible loop domain regulates p53 binding and survival. Mol Cell Biol 26: 4421–4434.
Dong D, Ni M, Li J, Xiong S, Ye W, Virrey JJ et al. (2008). Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res 68: 498–505.
Edinger AL, Thompson CB . (2004). Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16: 663–669.
Edlich F, Weiwad M, Erdmann F, Fanghanel J, Jarczowski F, Rahfeld JU et al. (2005). Bcl-2 regulator FKBP38 is activated by Ca(2+)/calmodulin. EMBO J 24: 2688–2699.
Enyedy IJ, Ling Y, Nacro K, Tomita Y, Wu X, Cao Y et al. (2001). Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. J Med Chem 44: 4313–4324.
Eskes R, Desagher S, Antonsson B, Martinou JC . (2000). Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20: 929–935.
Ferri KF, Kroemer G . (2001). Organelle-specific initiation of cell death pathways. Nat Cell Biol 3: E255–E263.
Gascoyne RD, Adomat SA, Krajewski S, Krajewska M, Horsman DE, Tolcher AM et al. (1997). Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin's lymphoma. Blood 90: 244–251.
Green DR, Kroemer G . (2004). The pathophysiology of mitochondrial cell death. Science 305: 626–629.
Han YH, Cao X, Lin B, Lin F, Kolluri SK, Stebbins J et al. (2006). Regulation of Nur77 nuclear export by c-Jun N-terminal kinase and Akt. Oncogene 25: 2974–2986.
Hanada M, Delia D, Aiello A, Stadtmauer E, Reed J . (1993). Bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 82: 1820–1828.
Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.
He H, Lam M, McCormick TS, Distelhorst CW . (1997). Maintenance of calcium homeostasis in the reticulum by Bcl-2. J Cell Biol 138: 1219–1228.
Hermine O, Haioun C, Lepage E, d'Agay M-F, Briere J, Lavignac C et al. (1996). Prognostic significance of Bcl-2 protein expression in aggressive non-Hodgkin's lymphoma. Blood 87: 265–272.
Hetz C, Bernasconi P, Fisher J, Lee AH, Bassik MC, Antonsson B et al. (2006). Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312: 572–576.
Hill ME, MacLennan KA, Cunningham DC, Hudson BV, Burke M, Clarke P et al. (1996). Prognostic significance of BCL-2 expression and bcl-2 major breakpoint region rearrangement in diffuse large cell non-Hodgkin's lymphoma: a British National Lymphoma Investigation Study. Blood 88: 1046–1051.
Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T et al. (2007). Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25: 193–205.
Ikegaki N, Katsumata M, Minna J, Tsujimoto Y . (1994). Expression of Bcl-2 in small cell lung carcinoma cells. Cancer Res 54: 6–8.
Jaattela M, Cande C, Kroemer G . (2004). Lysosomes and mitochondria in the commitment to apoptosis: a potential role for cathepsin D and AIF. Cell Death Differ 11: 135–136.
Khanna KK, Wie T, Burrows SR, Moss DJ, Krajewski S, Reed JC et al. (1996). Expression of p53, Bcl-2, Bax, Bcl-X2 and c-myc in radiation-induced apoptosis in Burkitt's lymphoma cells. Cell Death Differ 3: 315–322.
Kim R, Emi M, Tanabe K, Murakami S . (2006). Role of the unfolded protein response in cell death. Apoptosis 11: 5–13.
Kitada S, Kress CL, Krajewska M, Jia L, Pellecchia M, Reed JC . (2008). Bcl-2 antagonist apogossypol (NSC736630) displays single-agent activity in Bcl-2-transgenic mice and has superior efficacy with less toxicity compared with gossypol (NSC19048). Blood 111: 3211–3219.
Klasa RJ, Gillum AM, Klem RE, Frankel SR . (2002). Oblimersen Bcl-2 antisense: facilitating apoptosis in anticancer treatment. Antisense Nucleic Acid Drug Dev 12: 193–213.
Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH . (2000). Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7: 1166–1173.
Krajewska M, Kitada S, Winter JN, Variakojis D, Lichtenstein A, Zhai D et al. (2008). Bcl-B expression in human epithelial and nonepithelial malignancies. Clin Cancer Res 14: 3011–3021.
Krajewska M, Krajewski S, Epstein JI, Shabaik A, Sauvageot J, Song K et al. (1996a). Immunohistochemical analysis of Bcl-2, Bax, Bcl-X and Mcl-1 expression in prostate cancers. Am J Pathol 148: 1567–1576.
Krajewska M, Moss S, Krajewski S, Song K, Holt P, Reed JC . (1996b). Elevated expression of Bcl-X and reduced Bak in primary colorectal adenocarcinomas. Cancer Res 56: 2422–2427.
Krajewski S, Blomvqvist C, Franssila K, Krajewska M, Wasenius V-M, Niskanen E et al. (1995a). Reduced expression of pro-apoptotic gene Bax is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res 55: 4471–4478.
Krajewski S, Chatten J, Hanada M, Womer R, Reed JC . (1995b). Immunohistochemical analysis of the Bcl-2 oncoprotein in human neuroblastomas. Lab Invest 71: 42–54.
Kroemer G, Galluzzi L, Brenner C . (2007). Mitochondrial membrane permeabilization in cell death. Physiol Rev 87: 99–163.
Kuo TH, Kim HR, Zhu L, Yu Y, Lin HM, Tsang W . (1998). Modulation of endoplasmic reticulum calcium pump by Bcl-2. Oncogene 17: 1903–1910.
Kutzki O, Park HS, Ernst JT, Orner BP, Yin H, Hamilton AD . (2002). Development of a potent Bcl-x(L) antagonist based on alpha-helix mimicry. J Am Chem Soc 124: 11838–11839.
Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R et al. (2002). Bid, bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111: 331–342.
Leone M, Zhai D, Sareth S, Kitada S, Reed JC, Pellecchia M . (2003). Cancer prevention by tea polyphenols is linked to their direct inhibition of anti-apoptotic Bcl-2-family proteins. Cancer Res 63: 8118–8121.
Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ . (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2: 183–192.
Levine B, Kroemer G . (2008). Autophagy in the pathogenesis of disease. Cell 132: 27–42.
Li C, Fox CJ, Master SR, Bindokas VP, Chodosh LA, Thompson CB . (2002). Bcl-X(L) affects Ca(2+) homeostasis by altering expression of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci USA 99: 9830–9835.
Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H et al. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402: 672–676.
Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G et al. (1998). Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 72: 8586–8596.
Lin B, Kolluri SK, Lin F, Liu W, Han Y-H, Cao X et al. (2004). Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor TR3/NGFI-B/Nur77. Cell 116: 527–540.
Liu H, Peng HW, Cheng YS, Yuan HS, Yang-Yen HF . (2005). Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol Cell Biol 25: 3117–3126.
Luciano F, Krajewska M, Ortiz-Rubio P, Krajewski S, Zhai D, Faustin B et al. (2007). Nur77 converts phenotype of Bcl-B, an antiapoptotic protein expressed in plasma cells and myeloma. Blood 109: 3849–3855.
Lum JJ, DeBerardinis RJ, Thompson CB . (2005). Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 6: 439–448.
Lutter M, Fang M, Luo X, Nishijima M, Xie X-s, Wang X . (2000). Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol 2: 754–756.
Manion MK, O'Neill JW, Giedt CD, Kim KM, Zhang KY, Hockenbery DM . (2004). Bcl-XL mutations suppress cellular sensitivity to antimycin A. J Biol Chem 279: 2159–2165.
McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ . (2001). Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21: 1249–1259.
McMillin JB, Dowhan W . (2002). Cardiolipin and apoptosis. Biochem Biophys Acta 1585: 97–107.
Meier P, Vousden KH . (2007). Lucifer's labyrinth—ten years of path finding in cell death. Mol Cell 28: 746–754.
Meijerink JP, Mensink EJ, Wang K, Sedlak TW, Sloetjes AW, de Witte T et al. (1998). Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood 91: 2991–2997.
Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Hoffman B et al. (1994). Tumor suppressor p53 is a regulator of BCL-2 and BAX in gene expression in vitro and in vivo. Oncogene 9: 1799–1805.
Miyashita T, Reed JC . (1995). Tumor suppressor p53 is a direct transcriptional activator of human Bax gene. Cell 80: 293–299.
Mohan KV, Gunasekaran P, Varalakshmi E, Hara Y, Nagini S . (2007). In vitro evaluation of the anticancer effect of lactoferrin and tea polyphenol combination on oral carcinoma cells. Cell Biol Int 31: 599–608.
Monni O, Joensuu H, Franssila K, Klefstrom J, Alitalo K, Knuutila S . (1997). BCL2 overexpression associated with chromosomal amplification in diffuse large B-cell lymphoma. Blood 90: 1168–1174.
Mott JL, Kobayashi S, Bronk SF, Gores GJ . (2007). mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26: 6133–6140.
Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS et al. (1996). X-ray and NMR structure of human Bcl-XL, an inhibitor of programmed cell death. Nature 381: 335–341.
Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Murthy Madiraju SR et al. (2007). Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci USA 104: 19512–19517.
O'Brien S, Moore JO, Boyd TE, Larratt LM, Skotnicki A, Koziner B et al. (2007). Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol 25: 1114–1120.
Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T et al. (2000). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288: 1053–1058.
Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. (2005). An inhibitor of Bcl-2-family proteins induces regression of solid tumors. Nature 435: 677–681.
Orrenius S, Zhivotovsky B, Nicotera P . (2003). Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4: 552–565.
Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al. (2005). Bcl-2 antiapoptotic proteins inhibit beclin 1-dependent autophagy. Cell 122: 927–939.
Pedersen IM, Kitada S, Leoni LM, Zapata JM, Karras J, Tsukada N et al. (2002). Protection of CLL B-cells by a follicular dendritic cell line is dependent on induction of Mcl-1. Blood 100: 1795–1801.
Pellecchia M, Reed JC . (2004). Inhibition of anti-apoptotic Bcl-2 family proteins by natural polyphenols: new avenues for cancer chemoprevention and chemotherapy. Curr Pharm Des 10: 1387–1398.
Penninger JM, Kroemer G . (2003). Mitochondria, AIF and caspases—rivaling for cell death execution. Nat Cell Biol 5: 97–99.
Pinton P, Ferrari D, Magalhaes P, Schulze-Osthoff K, Di Virgilio F, Pozzan T et al. (2000). Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J Cell Biol 148: 857–862.
Puthalakath H, Huang D, O'Reilly L, King S, Strasser A . (1999). The proapoptotic activity of the Bcl-2 family member bim is regulated by interaction with the dynein motor complex. Mol Cell 3: 287–296.
Puthalakath H, O'Reilly L, Gunn P, Lee L, Kelly P, Huntington N et al. (2007). ER stress triggers apoptosis by activating BH3-only protein bim. Cell 129: 1337–1349.
Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC et al. (1997). Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275: 967–969.
Reed JC . (2002). Apoptosis-based therapies. Nat Rev Drug Disc 1: 111–121.
Reed JC . (2006). Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13: 1378–1386.
Reed JC . (2008). Bcl-2-family proteins and hematologic malignancies: history and future prospects. Blood 111: 3322–3330.
Reed JC, Pellecchia M . (2005). Apoptosis-based therapies for hematological malignancies. Blood 106: 408–418.
Reed JC, Stein C, Subasinghe C, Haldar S, Croce CM, Yum S et al. (1990). Antisense-mediated inhibition of BCL2 proto-oncogene expression and leukemic cell growth and survival: comparisons of phosphodiester and phosphorothioate oligodeoxynucleotides. Cancer Res 50: 6565–6570.
Ron D, Walter P . (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8: 519–529.
Sakaki K, Wu J, Kaufman RJ . (2008). Protein Kinase C{theta} is required for autophagy in response to stress in the endoplasmic reticulum. J Biol Chem 283: 15370–15380.
Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M et al. (1997). Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275: 983–986.
Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS . (2002). BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 4: 842–849.
Schendel S, Montal M, Reed JC . (1998). Bcl-2 family proteins as ion-channels. Cell Death Differ 5: 372–380.
Schwartz PS, Manion MK, Emerson CB, Fry JS, Schulz CM, Sweet IR et al. (2007). 2-Methoxy antimycin reveals a unique mechanism for Bcl-x(L) inhibition. Mol Cancer Ther 6: 2073–2080.
Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T et al. (2003). BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300: 135–139.
Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB et al. (2004). Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6: 1221–1228.
Shohat G, Shani G, Eisenstein M, Kimchi A . (2002). The DAP-kinase family of proteins: study of a novel group of calcium-regulated death-promoting kinases. Biochim Biophys Acta 1600: 45–50.
Silvestrini R, Veneroni S, Daidone MG, Benini E, Boracchi P, Mezzetti M et al. (1994). The Bcl-2 protein: a prognostic indicator strongly related to p53 protein in lymph node-negative breast cancer patients. J Natl Cancer Inst 86: 499–504.
Strasser A . (2005). The role of BH3-only proteins in the immune system. Nat Rev Immunol 5: 189–200.
Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R . (2004). Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 16: 59–68.
Tanaka S, Louie D, Kant J, Reed J . (1992). Frequent somatic mutations in translocated BcL2 genes of non-Hodgkin's lymphoma patients. Blood 79: 229–237.
Tang SC, Visser L, Hepperle B, Hanson J, Poppema S . (1994). Clinical significance of bcl-2-MBR gene rearrangement and protein expression in diffuse large-cell non-Hodgkin's lymphoma: an analysis of 83 cases. J Clin Oncol 12: 149–154.
Thomenius MJ, Distelhorst CW . (2003). Bcl-2 on the endoplasmic reticulum: protecting the mitochondria from a distance. J Cell Sci 116: 4493–4499.
Tron VA, Krajewski S, Klein-Parker H, Li G, Ho VC, Reed JC . (1995). Immunohistochemical analysis of Bcl-2 protein regulation in cutaneous melanoma. Am J Pathol 146: 643–650.
Tsujimoto Y, Cossman J, Jaffe E, Croce C . (1985). Involvement of the Bcl-2 gene in human follicular lymphoma. Science 228: 1440–1443.
Tzung S, Kim KM, Basanez G, Giedt CD, Simon J, Zimmerberg J et al. (2001). Antimycin: A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol 3: 183–192.
Vaux DL, Cory S, Adams JM . (1988). Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335: 440–442.
Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD et al. (2004). Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305: 1466–1470.
Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F et al. (1999). Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284: 339–343.
Wang J-L, Liu D, Zhang Z-J, Shan S, Han X, Srinivascula AM et al. (2000a). Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA 97: 7124–7129.
Wang J-L, Zhang Z-J, Choksi S, Shan S, lu Z, Croce CM et al. (2000b). Cell permeable Bcl-2 binding peptides: a chemical approach to apoptosis induction in tumor cells. Cancer Res 60: 1498–1502.
Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M et al. (2000). tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14: 2060–2071.
Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ et al. (2001). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292: 727–730.
Wood DE, Newcomb EW . (1999). Caspase-dependent activation of calpain during drug-induced apoptosis. J Biol Chem 274: 8309–8315.
Wood DE, Thomas A, Devi LA, Berman Y, Beavis RC, Reed JC et al. (1998). Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene 17: 1069–1078.
Xu C, Bailly-Maitre B, Reed JC . (2005). Endoplamic reticulum stress: cell life and death decisions. J Clinical Invest 115: 2656–2664.
Xu C, Xu W, Palmer AE, Reed JC . (2008). BI-1 regulates endoplasmic reticulum Ca2+ homeostasis downstream of Bcl-2-family proteins. J Biol Chem 283: 11477–11484.
Xu Q, Reed JC . (1998). BAX inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol Cell 1: 337–346.
Yip KW, Godoi PH, Zhai D, Garcia X, Cellitti JF, Cuddy M et al. (2008). A TR3/Nur77 peptide-based high-throughput fluorescence polarization screen for small molecule bcl-b inhibitors. J Biomol Screen (E-pub ahead of print).
Yip KW, Shi W, Pintilie M, Martin JD, Mocanu JD, Wong D et al (2006). Prognostic significance of the Epstein–Barr virus, p53, Bcl-2, and survivin in nasopharyngeal cancer. Clin Cancer Res 12: 5726–5732.
Youn H, Sun L, Prywes R, Liu J . (1999). Apoptosis of T cells mediated by ca2+-induced release of the transcription factor mef2. Science 286: 790–793.
Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L et al. (2006). Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8: 1124–1132.
Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L . (2003). PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci USA 100: 1931–1936.
Yunis JJ, Mayer MG, Arensen MA, Aeppli DP, Oken MM, Frizzera G . (1989). Bcl-2 and other genomic alterations in the prognosis of large-cell lymphomas. N Engl J Med 320: 1047–1054.
Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ . (1996). Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-XL . Cell 87: 619–628.
Zheng HC, Takahashi H, Li XH, Hara T, Masuda S, Guan YF et al. (2008). Overexpression of GRP78 and GRP94 are markers for aggressive behavior and poor prognosis in gastric carcinomas. Hum Pathol 39: 1042–1049.
Acknowledgements
We thank M Hanaii and T Siegfried for manuscript preparation, and the NIH for generous support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
This article is cited by
-
7SK small nuclear RNA (Rn7SK) induces apoptosis through intrinsic and extrinsic pathways in human embryonic kidney cell line
Molecular Biology Reports (2024)
-
Supplementation with sesame oil suppresses genotoxicity, hepatotoxicity and enterotoxicity induced by sodium arsenite in rats
Lipids in Health and Disease (2023)
-
Anti-oncogenic effects of dutasteride, a dual 5-alpha reductase inhibitor and a drug for benign prostate hyperplasia, in bladder cancer
Journal of Translational Medicine (2023)
-
Differential expression pattern of Bcl-2 family members in B and T cells in systemic lupus erythematosus and rheumatoid arthritis
Arthritis Research & Therapy (2023)
-
Long non-coding RNA SOX2-OT enhances cancer biological traits via sponging to tumor suppressor miR-122-3p and miR-194-5p in non-small cell lung carcinoma
Scientific Reports (2023)