Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

In vitro genetic screen identifies a cooperative role for LPA signaling and c-Myc in cell transformation

Abstract

c-Myc drives uncontrolled cell proliferation in various human cancers. However, in mouse embryo fibroblasts (MEFs), c-Myc also induces apoptosis by activating the p19Arf tumor suppressor pathway. Tbx2, a transcriptional repressor of p19Arf, can collaborate with c-Myc by suppressing apoptosis. MEFs overexpressing c-Myc and Tbx2 are immortal but not transformed. We have performed an unbiased genetic screen, which identified 12 oncogenes that collaborate with c-Myc and Tbx2 to transform MEFs in vitro. One of them encodes the LPA2 receptor for the lipid growth factor lysophosphatidic acid (LPA). We find that LPA1 and LPA4, but not LPA3, can reproduce the transforming effect of LPA2. Using pharmacological inhibitors, we show that the in vitro cell transformation induced by LPA receptors is dependent on the Gi-linked ERK and PI3K signaling pathways. The transforming ability of LPA1, LPA2 and LPA4 was confirmed by tumor formation assays in vivo and correlated with prolonged ERK1/2 activation in response to LPA. Our results reveal a direct role for LPA receptor signaling in cell transformation and tumorigenesis in conjunction with c-Myc and reduced p19Arf expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Adhikary S, Eilers M . (2005). Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6: 635–645.

    Article  CAS  Google Scholar 

  • Benito M, Lorenzo M . (1993). Platelet derived growth factor/tyrosine kinase receptor mediated proliferation. Growth Regul 3: 172–179.

    CAS  PubMed  Google Scholar 

  • Boucharaba A, Serre CM, Gres S, Saulnier-Blache JS, Bordet JC, Guglielmi J et al. (2004). Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest 114: 1714–1725.

    Article  CAS  Google Scholar 

  • Bowe MA, Fallon JR . (1995). The role of agrin in synapse formation. Annu Rev Neurosci 18: 443–462.

    Article  CAS  Google Scholar 

  • Datta A, Nag A, Pan W, Hay N, Gartel AL, Colamonici O et al. (2004). Myc-ARF (alternate reading frame) interaction inhibits the functions of Myc. J Biol Chem 279: 36698–36707.

    Article  CAS  Google Scholar 

  • Ding Z, Liang J, Lu Y, Yu Q, Songyang Z, Lin SY et al. (2006). A retrovirus-based protein complementation assay screen reveals functional AKT1-binding partners. Proc Natl Acad Sci USA 103: 15014–15019.

    Article  CAS  Google Scholar 

  • Drayton S, Rowe J, Jones R, Vatcheva R, Cuthbert-Heavens D, Marshall J et al. (2003). Tumor suppressor p16INK4a determines sensitivity of human cells to transformation by cooperating cellular oncogenes. Cancer Cell 4: 301–310.

    Article  CAS  Google Scholar 

  • Erickson JR, Hasegawa Y, Fang X, Eder A, Mao M, Furui T et al. (2001). Lysophosphatidic acid and ovarian cancer: a paradigm for tumorogenesis and patient management. Prostaglandins 64: 63–81.

    Article  CAS  Google Scholar 

  • Fu L, Qin YR, Xie D, Chow HY, Ngai SM, Kwong DL et al. (2007). Identification of alpha-actinin 4 and 67 kDa laminin receptor as stage-specific markers in esophageal cancer via proteomic approaches. Cancer 110: 2672–2681.

    Article  CAS  Google Scholar 

  • Gil J, Peters G . (2006). Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 7: 667–677.

    Article  CAS  Google Scholar 

  • Heidecker G, Huleihel M, Cleveland JL, Kolch W, Beck TW, Lloyd P et al. (1990). Mutational activation of c-raf-1 and definition of the minimal transforming sequence. Mol Cell Biol 10: 2503–2512.

    Article  CAS  Google Scholar 

  • Honda K, Yamada T, Endo R, Ino Y, Gotoh M, Tsuda H et al. (1998). Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. J Cell Biol 140: 1383–1393.

    Article  CAS  Google Scholar 

  • Honda K, Yamada T, Hayashida Y, Idogawa M, Sato S, Hasegawa F et al. (2005). Actinin-4 increases cell motility and promotes lymph node metastasis of colorectal cancer. Gastroenterology 128: 51–62.

    Article  CAS  Google Scholar 

  • Huang MC, Lee HY, Yeh CC, Kong Y, Zaloudek CJ, Goetzl EJ . (2004). Induction of protein growth factor systems in the ovaries of transgenic mice overexpressing human type 2 lysophosphatidic acid G protein-coupled receptor (LPA2). Oncogene 23: 122–129.

    Article  CAS  Google Scholar 

  • Ishii I, Contos JJ, Fukushima N, Chun J . (2000). Functional comparisons of the lysophosphatidic acid receptors, LP(A1)/VZG-1/EDG-2, LP(A2)/EDG-4, and LP(A3)/EDG-7 in neuronal cell lines using a retrovirus expression system. Mol Pharmacol 58: 895–902.

    Article  CAS  Google Scholar 

  • Ishii I, Fukushima N, Ye X, Chun J . (2004). Lysophospholipid receptors: signaling and biology. Annu Rev Biochem 73: 321–354.

    Article  CAS  Google Scholar 

  • Jacobs JJ, Keblusek P, Robanus-Maandag E, Kristel P, Lingbeek M, Nederlof PM et al. (2000). Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nat Genet 26: 291–299.

    Article  CAS  Google Scholar 

  • Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M . (1999). Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 13: 2678–2690.

    Article  CAS  Google Scholar 

  • Jaffe AB, Hall A . (2005). Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21: 247–269.

    Article  CAS  Google Scholar 

  • Jones SM, Kazlauskas A . (2001). Growth-factor-dependent mitogenesis requires two distinct phases of signalling. Nat Cell Biol 3: 165–172.

    Article  CAS  Google Scholar 

  • Khosravi-Far R, White MA, Westwick JK, Solski PA, Chrzanowska-Wodnicka M, Van Aelst L et al. (1996). Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol Cell Biol 16: 3923–3933.

    Article  CAS  Google Scholar 

  • Koh EY, Chen T, Daley GQ . (2002). Novel retroviral vectors to facilitate expression screens in mammalian cells. Nucleic Acids Res 30: e142.

    Article  Google Scholar 

  • Kostenko EV, Mahon GM, Cheng L, Whitehead IP . (2005). The Sec14 homology domain regulates the cellular distribution and transforming activity of the Rho-specific guanine nucleotide exchange factor Dbs. J Biol Chem 280: 2807–2817.

    Article  CAS  Google Scholar 

  • Krimpenfort P, Ijpenberg A, Song JY, van der Valk M, Nawijn M, Zevenhoven J et al. (2007). p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 448: 943–946.

    Article  CAS  Google Scholar 

  • Land H, Chen AC, Morgenstern JP, Parada LF, Weinberg RA . (1986). Behavior of myc and ras oncogenes in transformation of rat embryo fibroblasts. Mol Cell Biol 6: 1917–1925.

    Article  CAS  Google Scholar 

  • Land H, Parada LF, Weinberg RA . (1983). Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304: 596–602.

    Article  CAS  Google Scholar 

  • Lee CW, Rivera R, Dubin AE, Chun J . (2007). LPA(4)/GPR23 is a lysophosphatidic acid (LPA) receptor utilizing G(s)-, G(q)/G(i)-mediated calcium signaling and G(12/13)-mediated Rho activation. J Biol Chem 282: 4310–4317.

    Article  CAS  Google Scholar 

  • Lee CW, Rivera R, Gardell S, Dubin AE, Chun J . (2006a). GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem 281: 23589–23597.

    Article  CAS  Google Scholar 

  • Lee Z, Swaby RF, Liang Y, Yu S, Liu S, Lu KH et al. (2006b). Lysophosphatidic acid is a major regulator of growth-regulated oncogene alpha in ovarian cancer. Cancer Res 66: 2740–2748.

    Article  CAS  Google Scholar 

  • Lingbeek ME, Jacobs JJ, van Lohuizen M . (2002). The T-box repressors TBX2 and TBX3 specifically regulate the tumor suppressor gene p14ARF via a variant T-site in the initiator. J Biol Chem 277: 26120–26127.

    Article  CAS  Google Scholar 

  • Mills GB, Moolenaar WH . (2003). The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 3: 582–591.

    Article  CAS  Google Scholar 

  • Moolenaar WH, van Meeteren LA, Giepmans BN . (2004). The ins and outs of lysophosphatidic acid signaling. Bioessays 26: 870–881.

    Article  CAS  Google Scholar 

  • Noguchi K, Ishii S, Shimizu T . (2003). Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem 278: 25600–25606.

    Article  CAS  Google Scholar 

  • O’regan L, Blot J, Fry AM . (2007). Mitotic regulation by NIMA-related kinases. Cell Div 2: 25.

    Article  Google Scholar 

  • Pasternack SM, von Kugelgen I, Aboud KA, Lee YA, Ruschendorf F, Voss K et al. (2008). G protein-coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth. Nat Genet 40: 329–334.

    Article  CAS  Google Scholar 

  • Pietras K, Sjoblom T, Rubin K, Heldin CH, Ostman A . (2003). PDGF receptors as cancer drug targets. Cancer Cell 3: 439–443.

    Article  CAS  Google Scholar 

  • Prince S, Carreira S, Vance KW, Abrahams A, Goding CR . (2004). Tbx2 directly represses the expression of the p21(WAF1) cyclin-dependent kinase inhibitor. Cancer Res 64: 1669–1674.

    Article  CAS  Google Scholar 

  • Qi Y, Gregory MA, Li Z, Brousal JP, West K, Hann SR . (2004). p19ARF directly and differentially controls the functions of c-Myc independently of p53. Nature 431: 712–717.

    Article  CAS  Google Scholar 

  • Ramjaun AR, Downward J . (2007). Ras and phosphoinositide 3-kinase: partners in development and tumorigenesis. Cell Cycle 6: 2902–2905.

    Article  CAS  Google Scholar 

  • Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ et al. (1994). Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370: 527–532.

    Article  CAS  Google Scholar 

  • Seoane J, Le HV, Massague J . (2002). Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419: 729–734.

    Article  CAS  Google Scholar 

  • Sherr CJ . (2004). Principles of tumor suppression. Cell 116: 235–246.

    Article  CAS  Google Scholar 

  • Sherr CJ . (2006). Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6: 663–673.

    Article  CAS  Google Scholar 

  • Shields JM, Pruitt K, McFall A, Shaub A, Der CJ . (2000). Understanding Ras: ‘it ain’t over ‘til it's over’. Trends Cell Biol 10: 147–154.

    Article  CAS  Google Scholar 

  • Toyoshima M, Tanaka N, Aoki J, Tanaka Y, Murata K, Kyuuma M et al. (2007). Inhibition of tumor growth and metastasis by depletion of vesicular sorting protein Hrs: its regulatory role on E-cadherin and beta-catenin. Cancer Res 67: 5162–5171.

    Article  CAS  Google Scholar 

  • van Meeteren LA, Moolenaar WH . (2007). Regulation and biological activities of the autotaxin-LPA axis. Prog Lipid Res 46: 145–160.

    Article  CAS  Google Scholar 

  • Ye X, Hama K, Contos JJ, Anliker B, Inoue A, Skinner MK et al. (2005). LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 435: 104–108.

    Article  CAS  Google Scholar 

  • Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ et al. (1998). Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12: 2424–2433.

    Article  CAS  Google Scholar 

  • Zuber J, Tchernitsa OI, Hinzmann B, Schmitz AC, Grips M, Hellriegel M et al. (2000). A genome-wide survey of RAS transformation targets. Nat Genet 24: 144–152.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Laurens A van Meeteren for LPA receptor plasmids and advice, Wendy Lagcher for technical assistance and Nullin Divecha and Daniel S Peeper for helpful discussions. This study was supported by grants from the Dutch Cancer Society, NKI 2003-2935 (to MvL) and NKI 2003-2964 (to WHM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M van Lohuizen.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taghavi, P., Verhoeven, E., Jacobs, J. et al. In vitro genetic screen identifies a cooperative role for LPA signaling and c-Myc in cell transformation. Oncogene 27, 6806–6816 (2008). https://doi.org/10.1038/onc.2008.294

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.294

Keywords

This article is cited by

Search

Quick links