Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Atm heterozygosity does not increase tumor susceptibility to ionizing radiation alone or in a p53 heterozygous background

Abstract

Ataxia-Telangiectasia (A-T) is an autosomal recessive human disease characterized by genetic instability, radiosensitivity, immunodeficiency and cancer predisposition, because of mutation in both alleles of the ATM (ataxia-telangiectasia mutated) gene. The role of Atm heterozygosity in cancer susceptibility is controversial, in both human and mouse. Earlier studies identified deletions near the Atm gene on mouse chromosome 9 in radiation-induced lymphomas from p53 heterozygous mice. To determine whether Atm was the target of these deletions, Atm heterozygous as well as Atm/P53 double heterozygous mice were treated with ionizing radiation. There were no significant differences in tumor latency, progression and lifespan after γ-radiation in Atm heterozygous mice compared with their wild-type control counterparts. Deletions were found on chromosome 9 near the Atm locus in radiation-induced tumors, but in 50% of the cases the deletion included the knockout allele, and the expression of Atm was maintained in the tumors indicating that loss of heterozygosity on chromosome 9 is not driven by Atm, but by an alternative tumor suppressor gene located near Atm on this chromosome. We conclude that Atm heterozygosity does not confer an increase in tumor susceptibility in this context.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Athma P, Rappaport R, Swift M . (1996). Molecular genotyping shows that ataxia-telangiectasia heterozygotes are predisposed to breast cancer. Cancer Genet Cytogenet 92: 130–134.

    Article  CAS  PubMed  Google Scholar 

  • Balmain A . (2002). Cancer as a complex genetic trait: tumor susceptibility in humans and mouse models. Cell 108: 145–152.

    Article  CAS  PubMed  Google Scholar 

  • Barlow C, Eckhaus MA, Schäffer AA, Wynshaw-Boris A . (1999). Atm haploinsufficiency results in increased sensitivity to sublethal doses of ionizing radiation in mice. Nat Genet 21: 359–360.

    Article  CAS  PubMed  Google Scholar 

  • Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F et al. (1996). Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86: 159–171.

    Article  CAS  PubMed  Google Scholar 

  • Bishop DT, Hopper J . (1997). AT-tributable risks? Nat Genet 15: 226.

    Article  CAS  PubMed  Google Scholar 

  • Bowen TJ, Yakushiji H, Montagna C, Jain S, Ried T, Wynshaw-Boris A . (2005). Atm heterozygosity cooperates with loss of Brca1 to increase the severity of mammary gland cancer and reduce ductal branching. Cancer Res 65: 8736–8746.

    Article  CAS  PubMed  Google Scholar 

  • Burns PA, Bremner R, Balmain A . (1991). Genetic changes during mouse skin tumorigenesis. Environ Health Perspect 93: 41–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai WW, Mao JH, Chow CW, Damani S, Balmain A, Bradley A . (2002). Genome-wide detection of chromosomal imbalances in tumors using BAC microarrays. Nat Biotechnol 20: 393–396.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Birkholtz GG, Lindblom P, Rubio C, Lindblom A . (1998). The role of ataxia-telangiectasia heterozygotes in familial breast cancer. Cancer Res 58: 1376–1379.

    CAS  PubMed  Google Scholar 

  • Cho KR, Vogelstein B . (1992). Genetic alterations in the adenoma-carcinoma sequence. Cancer 70: 1727–1731.

    Article  CAS  PubMed  Google Scholar 

  • Connolly L, Lasarev M, Jordan R, Schwartz JL, Turker MS . (2006). Atm haploinsufficiency does not affect ionizing radiation mutagenesis in solid mouse tissues. Radiat Res 166: 39–46.

    Article  CAS  PubMed  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA, Butel JS, Bradley A . (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221.

    Article  CAS  PubMed  Google Scholar 

  • Elson A, Wang Y, Daugherty CJ, Morton CC, Zhou F, Campos-Torres J et al. (1996). Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc Natl Acad Sci USA 93: 13084–13089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FitzGerald MG, Bean JM, Hegde SR, Unsal H, MacDonald DJ, Harkin DP et al. (1997). Heterozygous ATM mutations do not contribute to early onset of breast cancer. Nature Genet 15: 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Gatti RA, Tward A, Concannon P . (1999). Cancer risk in ATM heterozygotes: a model of phenotypic and mechanistic differences between missense and truncating mutations. Mol Genet Metab 68: 419–423.

    Article  CAS  PubMed  Google Scholar 

  • Hansel DE, Kern SE, Hruban RH . (2003). Molecular pathogenesis of pancreatic cancer. Annu Rev Genomics Hum Genet 4: 237–256.

    Article  CAS  PubMed  Google Scholar 

  • Inskip HM, Kinlen LJ, Taylor AM, Woods CG, Arlett CF . (1999). Risk of breast cancer and other cancers in heterozygotes for ataxia-telangiectasia. Br J Cancer 7: 1304–1307.

    Article  Google Scholar 

  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. (1994). Tumor spectrum analysis in p53-mutant mice. Curr Biol 4: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Karabinis ME, Larson D, Barlow C, Wynshaw-Boris A, Moser AR . (2001). Heterozygosity for a mutation in Brca1 or Atm does not increase susceptibility to ENU-induced mammary tumors in ApcMin/+ mice. Carcinogenesis 22: 343–346.

    Article  CAS  PubMed  Google Scholar 

  • Kemp CJ, Wheldon T, Balmain A . (1994). p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nat Genet 8: 66–69.

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Shen K, Wang Y, Santner SJ, Chen J, Brooks SC, Wang YA . (2006). Atm-haploinsufficiency enhances susceptibility to carcinogen-induced mammary tumors. Carcinogenesis 27: 848–855.

    Article  CAS  PubMed  Google Scholar 

  • Mao JH, Perez-Losada J, Wu D, Delrosario R, Tsunematsu R, Nakayama KI et al. (2004). Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature 432: 775–779.

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka S, Ballif BA, Smogorzewska A, McDonald III ER, Hurov KE, Luo J et al. (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316: 1160–1166.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y . (1998). ATM: the p53 booster. Nat Med 4: 1231–1232.

    Article  CAS  PubMed  Google Scholar 

  • Olsen JH, Hahnemann JM, Børresen-Dale AL, Brøndum-Nielsen K, Hammarström L, Kleinerman R et al. (2001). Cancer in patients with ataxia-telangiectasia and in their relatives in the nordic countries. J Natl Cancer Inst 93: 121–127.

    Article  CAS  PubMed  Google Scholar 

  • Shiloh Y . (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3: 155–168.

    Article  CAS  PubMed  Google Scholar 

  • Spring K, Ahangari F, Scott SP, Waring P, Purdie DM, Chen PC et al. (2002). Mice heterozygous for mutation in Atm, the gene involved in ataxia-telangiectasia, have heightened susceptibility to cancer. Nat Genet 32: 185–190.

    Article  CAS  PubMed  Google Scholar 

  • Swift M, Morrell D, Massey RB, Chase CL . (1991). Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 325: 1831–1836.

    Article  CAS  PubMed  Google Scholar 

  • Taylor AM, Metcalfe JA, Thick J, Mak YF . (1996). Leukemia and lymphoma in ataxia telangiectasia. Blood 87: 423–438.

    CAS  PubMed  Google Scholar 

  • Teraoka SN, Malone KE, Doody DR, Suter NM, Ostrander EA, Daling JR et al. (2001). Increased frequency of ATM mutations in breast carcinoma patients with early onset disease and positive family history. Cancer 92: 479–487.

    Article  CAS  PubMed  Google Scholar 

  • Umesako S, Fujisawa K, Iiga S, Mori N, Takahashi M, Hong DP et al. (2005). Atm heterozygous deficiency enhances development of mammary carcinomas in p53 heterozygous knockout mice. Breast Cancer Res 7: R164–R170.

    Article  CAS  PubMed  Google Scholar 

  • Vorechovsky I, Rasio D, Luo L, Monaco C, Hammarstrom L, Webster AD et al. (1996). The ATM gene and susceptibility to breast cancer: analysis of 38 breast tumors reveals no evidence for mutation. Cancer Res 56: 2726–2732.

    CAS  PubMed  Google Scholar 

  • Westphal CH, Hoyes KP, Canman CE, Huang X, Kastan MB, Hendry JH et al. (1998). Loss of Atm radiosensitizes multiple p53 null tissues. Cancer Res 58: 5637–5639.

    CAS  PubMed  Google Scholar 

  • Westphal CH, Rowan S, Schmaltz C, Elson A, Fisher DE, Leder P . (1997). Atm and p53 cooperate in apoptosis and suppression of tumorigenesis, but not in resistance to acute radiation toxicity. Nat Genet 16: 397–401.

    Article  CAS  PubMed  Google Scholar 

  • Wooster R, Ford D, Mangion J, Ponder BA, Peto J, Easton DF et al. (1993). Absence of linkage to the ataxia telangiectasia locus in familial breast cancer. Hum Genet 92: 91–94.

    Article  CAS  PubMed  Google Scholar 

  • Worgul BV, Smilenov L, Brenner DJ, Junk A, Zhou W, Hall EJ . (2002). Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts. Proc Natl Acad Sci USA 99: 9836–9839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Ashley T, Brainerd EE, Bronson RT, Meyn MS, Baltimore D . (1996). Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 10: 2411–2422.

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Okayasu R, Weil MM, Silver A, McCarthy M, Zabriskie R et al. (2001). Elevated breast cancer risk in irradiated BALB/c mice associates with unique functional polymorphism of the Prkdc (DNA-dependent protein kinase catalytic subunit) gene. Cancer Res 61: 1820–1824.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Gonzalez-Sarmiento, Dr Sanchez-Garcia and Dr Cobaleda for useful comments; and Dr Kogan for tumor pathology analysis. Dr Balmain acknowledges support from the Barbara Bass Bakar Chair of Cancer Genetics. Dr Perez-Losada is an investigator of the ‘Programa Ramón y Cajal’ from the Spanish ‘Ministerio de Educación y Ciencia’ and the European Community, his study is partially supported by the ‘Fondo de Investigaciones Sanitarias’ (PI070057). Dr Castellanos is supported by the ‘Fondo de Investigaciones Sanitarias’ (PI070057). These studies were also supported by NCI grant U01 CA84244 and the DOE (DE-FG02-03ER63630) to Dr Balmain, and the UCSF Research-Evaluation Allocation Committee (REAC) to Dr Mao.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J H Mao or J Perez-Losada.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, J., Wu, D., DelRosario, R. et al. Atm heterozygosity does not increase tumor susceptibility to ionizing radiation alone or in a p53 heterozygous background. Oncogene 27, 6596–6600 (2008). https://doi.org/10.1038/onc.2008.280

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.280

Keywords

This article is cited by

Search

Quick links