Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance

Abstract

Changes in classical and nonclassical HLA class I as well as HLA class II antigens have been identified in malignant lesions. These changes, which are described in this review are believed to play a major role in the clinical course of the disease since both HLA class I and class II antigens are critical to the interaction between tumor cells and components of both innate and adaptive immune system. Abnormalities in HLA antigen expression in malignant cells, which range in frequency from 0–90%, are caused by distinct mechanisms. They include defects in β2-microglobulin (β2m) synthesis, loss of the gene(s) encoding HLA antigen heavy chain(s), mutations, which inhibit HLA antigen heavy chain transcription or translation, defects in the regulatory mechanisms, which control HLA antigen expression and/or abnormalities in one or more of the antigen processing, machinery (APM) components. More recently, epigenetic events associated with tumor development and progression have been found to underlie changes in HLA antigen, APM component, costimulatory molecule and tumor antigen (TA) expression in malignant cells. The types of epigenetic modifications that may occur in normal and malignant cells as well as their role in changes in HLA antigen expression by malignant cells have been reviewed. The epigenetic events associated with alterations in HLA antigen expression may be clinically relevant as, in some cases, they have been shown to impair the recognition of tumor cells by components of the adaptive immune system. The functional relevance and potential clinical significance of these epigenetic alterations have been addressed. Finally, unlike genetic alterations, epigenetic modifications can, in some cases, be reversed with pharmacologic agents that induce DNA hypomethylation or inhibit histone deacetylation. Therefore, strategies to overcome epigenetic modifications underlying changes in HLA antigen expression in malignant cells have been discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

5-AC:

5-aza-2′-deoxycytidine

APC:

antigen presenting cell

APM:

antigen processing machinery

β2m:

β2-microglobulin

CIITA:

class II transactivator protein

CTL:

cytotoxic T lymphocyte

DNMT:

DNA methyltransferase

HDAC:

histone de-acetylases

Ii:

invariant chain

IFN:

interferon

IL-2:

interleukin-2

MHC:

major histocompatability class

mRNA:

messenger RNA

ncRNA:

noncoding RNA transcripts

NK:

natural killer

RCC:

renal cell carcinoma

TA:

tumor antigen

Treg:

T regulatory cell

iTreg:

induced Treg

nTreg:

natural Treg

References

  • Acharya MR, Sparreboom A, Venitz J, Figg WD . (2005). Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol Pharm 68: 917–932.

    CAS  Google Scholar 

  • Altomonte M, Fonsatti E, Visintin A, Maio M . (2003). Targeted therapy of solid malignancies via HLA class II antigens: a new biotherapeutic approach? Oncogene 22: 6564–6569.

    CAS  PubMed  Google Scholar 

  • Backström E, Kristensson K, Ljunggren HG . (2004). Activation of natural killer cells: underlying molecular mechanisms revealed. Scand J Immunol 60: 14–22.

    PubMed  Google Scholar 

  • Bedford MT, Richard S . (2005). Arginine methylation: an emerging regulator of protein function. Mol Cell 18: 263–272.

    CAS  PubMed  Google Scholar 

  • Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E . (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120: 21–24.

    CAS  PubMed  Google Scholar 

  • Bernsen MR, Hakansson L, Gustafsson B, Krysander L, Rettrup B, Ruiter D et al. (2003). On the biological relevance of MHC class II and B7 expression by tumour cells in melanoma metastases. Br J Cancer 88: 424–431.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhalla KN . (2005). Epigenetic and chromatin modifiers as targeted therapy of hematological malignancies. J Clin Oncol 23: 3971–3993.

    CAS  PubMed  Google Scholar 

  • Bluestone JA, Tang Q . (2005). How do CD4+CD25+ regulatory T cells control autoimmunity? Curr Opin Immunol 17: 638–642.

    CAS  PubMed  Google Scholar 

  • Bovenzi V, Le NL, Cote S, Sinett D, Momparler LF, Momparler RL . (1999). DNA methylation of retinoic acid receptor in breast cancer and possible therapeutic role of 5′-aza-2′CdR. Anticancer Drugs 10: 471–476.

    CAS  PubMed  Google Scholar 

  • Cabrera T, Ruiz-Cabello F, Garrido F . (1995). Biological implications of HLA-DR expression in tumours. Scand J Immunol 41: 398–406.

    CAS  PubMed  Google Scholar 

  • Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al. (2004). MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101: 11755–11760.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campoli M, Chang CC, Oldford SA, Edgecombe AD, Drover S, Ferrone S . (2004). HLA antigen changes in malignant tumors of mammary epithelial origin: molecular mechanisms and clinical implications. Breast Dis 20: 105–125.

    CAS  PubMed  Google Scholar 

  • Campoli M, Ferrone S . (2006). A fresh look at an old story: revisiting HLA class II antigen expression by melanoma cells. Expert Rev Dermatol 1: 737–755.

    Google Scholar 

  • Campoli M, Ferrone S, Zea AH, Rodriguez PC, Ochoa AC . (2005). Mechanisms of tumor evasion. Cancer Treat Res 123: 61–88.

    CAS  PubMed  Google Scholar 

  • Chamuleau ME, Ossenkoppele GJ, van de Loosdrecht AA . (2006). MHC class II molecules in tumour immunology: prognostic marker and target for immune modulation. Immunobiology 211: 619–625.

    CAS  PubMed  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS . (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65: 6029–6033.

    CAS  PubMed  Google Scholar 

  • Chang CC, Campoli M, Ferrone S . (2005). Classical and nonclassical HLA class I antigen and NK cell-activating ligand changes in malignant cells: current challenges and future directions. Adv Cancer Res 93: 189–234.

    CAS  PubMed  Google Scholar 

  • Chang CC, Ferrone S . (2003). HLA-G in melanoma: can the current controversies be solved? Semin Cancer Biol 13: 361–369.

    CAS  PubMed  Google Scholar 

  • Chang CC, Ferrone S . (2006). NK cell activating ligands on human malignant cells: molecular and functional defects and potential clinical relevance. Semin Cancer Biol 16: 383–392.

    CAS  PubMed  Google Scholar 

  • Chang CC, Ferrone S . (2007). Immune selective pressure and HLA class I antigen defects in malignant lesions. Cancer Immunol Immunother 56: 227–236.

    CAS  PubMed  Google Scholar 

  • Chang CC, Murphy SP, Ferrone S . (2003). Differential in vivo and in vitro HLA-G expression in melanoma cells: potential mechanisms. Hum Immunol 64: 1057–1063.

    CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Chakraborty NG, Mukherji B . (2005). Regulatory T cells and tumor immunity. Cancer Immunol Immunother 54: 1153–1161.

    PubMed  Google Scholar 

  • Chil A, Sikorski M, Bobek M, Jakiel G, Marcinkiewicz J . (2003). Alterations in the expression of selected MHC antigens in premalignant lesions and squamous carcinomas of the uterine cervix. Acta Obstet Gynecol Scand 82: 1146–1152.

    PubMed  Google Scholar 

  • Chiorean EG, Dylla SJ, Olsen K, Lenvik T, Soignier Y, Miller JS . (2003). BCR/ABL alters the function of NK cells and the acquisition of killer immunoglobulin-like receptors (KIRs). Blood 101: 3527–3533.

    CAS  PubMed  Google Scholar 

  • Chou S-D, Khan ANH, Magner WJ, Tomasi TB . (2005). Histone acetylation regulates the cell type specific CIITA promoters, MHC class II expression and antigen presentation in tumor cells. Int Immunol 17: 1483–1494.

    CAS  PubMed  Google Scholar 

  • Chuang WL, Liu HW, Chang WY . (1990). Natural killer cell activity in patients with hepatocellular carcinoma relative to early development and tumor invasion. Cancer 65: 926–930.

    CAS  PubMed  Google Scholar 

  • Chuang JC, Yoo CB, Kwan JM, Li TW, Liang G, Yang AS et al. (2005). Comparison of biological effects of non- nucleoside DNA methylation inhibitors deoxycytidine. Mol Cancer Ther 4: 1515–1520.

    CAS  PubMed  Google Scholar 

  • Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS et al. (2004). Regulation of p53 activity through lysine methylation. Nature 432: 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Coral S, Sigalotti L, Colizzi F, Spessotto A, Nardi G, Cortini E et al. (2006). Phenotypic and functional changes of human melanoma xenografts induced by DNA hypomethylation: immunotherapeutic implications. J Cell Physiol 207: 58–66.

    CAS  PubMed  Google Scholar 

  • Coral S, Sigalotti L, Covre A, Nicolay HJM, Natali PG, Maio M . (2007). 5-aza-2′-deoxycytidine in cancer immunotherapy: a mouse to man story. Cancer Res 66: 1105–1113.

    Google Scholar 

  • Creswell P (guest ed) (2005). Antigen processing and presentation. Immunol Rev 207: 5–313.

    Google Scholar 

  • Demanet C, Mulder A, Deneys V, Worsham MJ, Maes P, Claas FH et al. (2004). Down-regulation of HLA-A and HLA-Bw6, but not HLA-Bw4, allospecificities in leukemic cells: an escape mechanism from CTL and NK attack? Blood 103: 3122–3130.

    CAS  PubMed  Google Scholar 

  • deRuijten AJM, van Gennip AH, Caron HN, Kemp S, van Kuilenburg ABP . (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370: 737–749.

    Google Scholar 

  • Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M et al. (2002). Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295: 1079–1082.

    CAS  PubMed  Google Scholar 

  • Drexler HG, Gignac SM, Brenner MK, Coustan-Smith E, Janossy G, Hoffbrand AV . (1988). Differential expression of MHC class II antigens in chronic B-cell disorders. Clin Exp Immunol 71: 217–223.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duncker K, Schlaf G, Bukur J, Altermann W, Handke D, Seliger B . (2008). Expression and regulation of non-classical HLA-G in renal cell carcinoma. Tissue Antigens 72: 137–148.

    Google Scholar 

  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD . (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3: 991–998.

    CAS  PubMed  Google Scholar 

  • Egger G, Liang G, Aparicio A, Jones PA . (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature 429: 457–463.

    CAS  PubMed  Google Scholar 

  • Eramo A, Pallini R, Lotti F, Sette G, Patti M, Bartucci M et al. (2005). Inhibition of DNA methylation sensitizes glioblastoma for tumor necrosis factor-related apoptosis-inducing ligand-mediated destruction. Cancer Res 65: 11469–11477.

    CAS  PubMed  Google Scholar 

  • Esteller M . (2003). Relevance of DNA methylation in the management of cancer. Lancet Oncol 4: 351–358.

    CAS  PubMed  Google Scholar 

  • Esteller M . (2006). Epigenetics provides a new generation of oncogenes and tumour-suppressor genes. Br J Cancer 94: 179–183.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang JY, Lu J, Chen YX, Yang L . (2003). Methylation on expression of tumor suppressor genes and proto- oncogene in human colon cancer cell lines. World J Gastroenterol 9: 1976–1980.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg AP, Tycko B . (2004). The history of cancer epigenetics. Nat Rev Cancer 4: 143–153.

    CAS  PubMed  Google Scholar 

  • Florenes VA, Skrede M, Jorgensen K, Nesland JM . (2004). Deacetylase inhibition in malignant melanomas: impact on cell cycle regulation and survival. Melanoma Res 14: 173–181.

    PubMed  Google Scholar 

  • Fonsatti E, Nicolay HJ, Sigalotti L, Calabrò L, Pezzani L, Colizzi F et al. (2007). Functional up-regulation of human leukocyte antigen class I antigens expression by 5-aza-2′-deoxycytidine in cutaneous melanoma: immunotherapeutic implications. Clin Cancer Res 13: 3333–3338.

    CAS  PubMed  Google Scholar 

  • Fonsatti E, Sigalotti L, Coral S, Colizzi F, Altomonte M, Maio M . (2003). Methylation-regulated expression of HLA class I antigens in melanoma. Int J Cancer 105: 430–431.

    CAS  PubMed  Google Scholar 

  • Fraga MF, Esteller M . (2005). Towards the human cancer epigenome: a first draft of histone modifications. Cell Cycle 4: 1377–1381.

    CAS  PubMed  Google Scholar 

  • French LE, Tschopp J . (2002). Defective death receptor signaling as a cause of tumor immune escape. Semin Cancer Biol 12: 51–55.

    CAS  PubMed  Google Scholar 

  • Friese MA, Wischhusen J, Wick W, Weiler M, Eisele G, Steinle A et al. (2004). RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64: 7596–7603.

    CAS  PubMed  Google Scholar 

  • Fuks F, Burgers WA, Godin N, Kasai M, Kouzarides T . (2001). DNmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J 20: 2536–2544.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Germenis AE, Karanikas V . (2007). Immunoepigenetics: the unseen side of cancer immunoediting. Immunol Cell Biol 85: 55–59.

    CAS  PubMed  Google Scholar 

  • Ghosh N, Gyory I, Wright G, Wood J, Wright KL . (2001). Positive regulatory domain I binding factor 1 silences class II transactivator expression in multiple myeloma cells. J Biol Chem 276: 15264–15268.

    CAS  PubMed  Google Scholar 

  • Gollob JA, Sciambi CJ, Peterson BL, Richmond T, Thoreson M, Moran K et al. (2006). Phase I trial of sequential low-dose 5-aza-2′-deoxycytidine plus high-dose intravenous bolus interleukin-2 in patients with melanoma or renal cell carcinoma. Clin Cancer Res 12: 4619–4627.

    CAS  PubMed  Google Scholar 

  • Grewal SI, Moazed D . (2003). Heterochromatin and epigenetic control of gene expression. Science 301: 798–802.

    CAS  PubMed  Google Scholar 

  • Guo ZS, Hong JA, Irvine KR, Chen GA, Spiess PJ, Liu Y et al. (2006). De novo induction of a cancer/testis antigen by 5-aza-2′- deoxycytidine augments adoptive immunotherapy in a murine tumor model. Cancer Res 66: 1105–1113.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herman JG, Baylin SB . (2003). Gene silencing in cancer in association with promoter hypermethylation. New Engl J Med 349: 2042–2054.

    CAS  PubMed  Google Scholar 

  • Hunt JS, Langat DK, McIntire RH, Morales PJ . (2006). The role of HLA-G in human pregnancy. Reprod Biol Endocrinol 4 (Suppl 1): S10.

    PubMed  PubMed Central  Google Scholar 

  • Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A et al. (2005). Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11: 71–76.

    CAS  PubMed  Google Scholar 

  • Issa JP, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, Faderl S et al. (2004). Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in hematopoietic malignancies. Blood 103: 1635–1640.

    CAS  PubMed  Google Scholar 

  • Jiang Z, Xu M, Savas L, LeClair P, Banner BF . (1999). Invariant chain expression in colon neoplasms. Virchows Arch 435: 32–36.

    CAS  PubMed  Google Scholar 

  • Jinushi M, Takehara T, Tatsumi T, Kanto T, Groh V, Spies T et al. (2003). Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid. Int J Cancer 104: 354–361.

    CAS  PubMed  Google Scholar 

  • Johnsen AK, Templeton DJ, Sy M, Harding CV . (1999). Deficiency of transporter for antigen presentation (TAP) in tumor cells allows evasion of immune surveillance and increases tumorigenesis. J Immunol 163: 4224.

    CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB . (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415–428.

    CAS  PubMed  Google Scholar 

  • Kanaseki T, Ikeda H, Takamura Y, Toyota M, Hirohashi Y, Tokino T et al. (2003). Histone deacetylation, but not hypermethylation, modifies class II transactivator and MHC class II gene expression in squamous cell carcinomas. J Immunol 170: 4980–4985.

    CAS  PubMed  Google Scholar 

  • Kawasaki H, Taira K . (2004). Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 431: 211–217.

    CAS  PubMed  Google Scholar 

  • Khan AN, Gregorie CJ, Tomasi TB . (2008). Histone deacetylase inhibitors induce TAP, LMP, Tapasin genes and MHC class I antigen presentation by melanoma cells. Cancer Immunol Immunother 57: 647–654.

    CAS  PubMed  Google Scholar 

  • Khan ANH, Magner WJ, Tomasi TB . (2004). An epigenetically altered tumor cell vaccine. Cancer Immunol Immunother 53: 748–754.

    CAS  PubMed  Google Scholar 

  • Kim R, Emi M, Tanabe K . (2007). Cancer immunoediting from immune surveillance to immune escape. Immunology 121: 1–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knutson KL, Disis ML . (2005). Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54: 721–728.

    CAS  PubMed  Google Scholar 

  • Lachner M, O’Sullivan RJ, Jenuwein T . (2003). An epigenetic road map for histone lysine methylation. J Cell Sci 116: 2117–2124.

    CAS  PubMed  Google Scholar 

  • Lecchi M, Lovisone E, Genetta C, Peruccio D, Resegotti L, Richiardi P . (1989). Gamma-IFN induces a differential expression of HLA-DR, DQ and DP antigens on peripheral blood myeloid leukemic blasts at various stages of differentiation. Leuk Res 13: 221–226.

    CAS  PubMed  Google Scholar 

  • Lee N, Geraghty DE . (2003). HLA-F surface expression on B cell and monocyte cell lines is partially independent from tapasin and completely independent from TAP. J Immunol 171: 5264–5271.

    CAS  PubMed  Google Scholar 

  • Lettini AA, Guidoboni M, Fonsatti E, Anzalone L, Cortini E, Maio M . (2007). Epigenetic remodelling of DNA in cancer. Histol Histopathol 22: 1413–1424.

    CAS  PubMed  Google Scholar 

  • Li H, Wu X . (2004). Histone deacetylase inhibitor, trichostatin A, activates p21WAF1/CIP1 expression through down regulation of c-myc and release of the repression of c-myc from the promoter in human cervical cancer cells. Biochem Biophys Res Commun 324: 860–867.

    CAS  PubMed  Google Scholar 

  • Lin A, Yan WH, Xu HH, Gan MF, Cai JF, Zhu M et al. (2007). HLA-G expression in human ovarian carcinoma counteracts NK cell function. Ann Oncol 18: 1804–1809.

    CAS  PubMed  Google Scholar 

  • Lozupone F, Rivoltini L, Luciani F, Venditti M, Lugini L, Cova A et al. (2003). Adoptive transfer of an anti-MART-127–35-specific CD8+ T cell clone leads to immunoselection of human melanoma antigen-loss variants in SCID mice. Eur J Immunol 33: 556.

    CAS  PubMed  Google Scholar 

  • Lucas DM, Davis ME, Parthun MR, Mone AP, Kitada S, Cunningham KD et al. (2004). The histone deacetylase inhibitor MS-275 induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia cells. Leukemia 18: 1207–1214.

    CAS  PubMed  Google Scholar 

  • Magner WJ, Kazim AL, Stewart C, Romano MA, Catalano G, Grande C et al. (2000). Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol 165: 7017–7024.

    CAS  PubMed  Google Scholar 

  • Maio M, Coral S, Fratta E, Altomonte M, Sigalotti L . (2003). Epigenetic targets for immune intervention in human malignancies. Oncogene 22: 6484–8488.

    CAS  PubMed  Google Scholar 

  • Malmberg KJ, Levitsky V, Norell H, de Matos CT, Carlsten M, Schedvins K et al. (2002). IFN-gamma protects short-term ovarian carcinoma cell lines from CTL lysis via a CD94/NKG2A-dependent mechanism. J Clin Invest 110: 1515–1523.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R . (2007). FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12: 1247–1252.

    CAS  PubMed  Google Scholar 

  • Marsman M, Jordens I, Griekspoor A, Neefjes J . (2005). Chaperoning antigen presentation by MHC class II molecules and their role in oncogenesis. Adv Cancer Res 93: 129–158.

    CAS  PubMed  Google Scholar 

  • Moore PS, Barbi S, Donadelli M, Costanzo C, Bassi C, Palmieri M et al. (2004). Gene expression profiling after treatment with histone deacetylase inhibitor trichostatin A reveals altered expression of both pro- and anti-apoptotic genes in pancreatic adenocarcinoma cells. Biochem Biophys Acta 1693: 167–176.

    CAS  PubMed  Google Scholar 

  • Morandi F, Levreri I, Bocca P, Galleni B, Raffaghello L, Ferrone S et al. (2007). Human neuroblastoma cells trigger an immunosuppressive program in monocytes by stimulating soluble HLA-G release. Cancer Res 67: 6433–6441.

    CAS  PubMed  Google Scholar 

  • Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A . (2005). Human natural killer cells: molecular mechanisms controlling NK cell activation and tumor cell lysis. Immunol Lett 100: 7–13.

    CAS  PubMed  Google Scholar 

  • Morimoto Y, Toyota M, Satoh A, Murai M, Mita H, Suzuki H et al. (2004). Inactivation of class II transactivator by DNA methylation and histone deacetylation associated with absence of HLA-DR induction by interferon-gamma in haematopoietic tumour cells. Br J Cancer 90: 844–852.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Natoni F, Diolordi L, Santoni C, Gilardini Montani MS . (2005). Sodium butyrate sensitises human pancreatic cancer cells to both the intrinsic and the extrinsic apoptotic pathways. Biochim Biophys Acta 1745: 318–329.

    CAS  PubMed  Google Scholar 

  • Neumeister P, Albanese C, Balent B, Greally J, Pestell RG . (2002). Senescence and epigenetic dysregulation in cancer. Int J Biochem Cell Biol 34: 1475–1490.

    CAS  PubMed  Google Scholar 

  • Nie Y, Yang G, Song Y, Zhao X, So C, Liao J et al. (2001). DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas. Carcinogenesis 22: 1615–1623.

    CAS  PubMed  Google Scholar 

  • Ogretmen B, McCauley MD, Safa AR . (1998). Molecular mechanisms of loss of beta 2-microglobulin expression in drug-resistant breast cancer sublines and its involvement in drug resistance. Biochemistry 3: 11679–11691.

    Google Scholar 

  • Ono K, Yamanaga Y, Yamamoto K, Koga SI, Nishimura J, Nawata H . (1996). Natural killing activities in chronic liver diseases and hepatocellular carcinoma. J Clin Immunol 16: 41–45.

    CAS  PubMed  Google Scholar 

  • Ostrand-Rosenberg S . (2004). Animal models of tumor immunity, immunotherapy and cancer vaccines. Curr Opin Immunol 16: 143–150.

    CAS  PubMed  Google Scholar 

  • Pierson BA, Miller JS . (1996). CD56+bright and CD56+dim natural killer cells in patients with chronic myelogenous leukemia progressively decrease in number, respond less to stimuli that recruit clonogenic natural killer cells, and exhibit decreased proliferation on a per cell basis. Blood 88: 2279–2287.

    CAS  PubMed  Google Scholar 

  • Pistoia V, Morandi F, Wang X, Ferrone S . (2007). Soluble HLA-G: are they clinically relevant? Semin Cancer Biol 17: 469–479.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reith W, LeibundGut-Landmann S, Waldburger JM . (2005). Regulation of MHC class II gene expression by the class II transactivator. Nat Rev Immunol 5: 793–806.

    CAS  PubMed  Google Scholar 

  • Rodríguez T, Méndez R, Del Campo A, Jiménez P, Aptsiauri N, Garrido F et al. (2007). Distinct mechanisms of loss of IFN-gamma mediated HLA class I inducibility in two melanoma cell lines. BMC Cancer 7: 34.

    PubMed  PubMed Central  Google Scholar 

  • Rouas-Freiss N, Moreau P, Menier C, Lemaoult J, Carosella ED . (2007). Expression of tolerogenic HLA-G molecules in cancer prevents antitumor responses. Semin Cancer Biol 17: 413–421.

    CAS  PubMed  Google Scholar 

  • Ruiter DJ, Mattijssen V, Broecker EB, Ferrone S . (1991). MHC antigens in human melanomas. Semin Cancer Biol 2: 35–45.

    CAS  PubMed  Google Scholar 

  • Satoh A, Toyota M, Ikeda H, Morimoto Y, Akino K, Mita H et al. (2004). Epigenetic inactivation of class II transactivator (CIITA) is associated with the absence of interferon-gamma-induced HLA-DR expression in colorectal and gastric cancer cells. Oncogene 23: 8876–8886.

    CAS  PubMed  Google Scholar 

  • Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT . (2002). Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev 188: 22–32.

    CAS  PubMed  Google Scholar 

  • Schrump DS, Fischette MR, Nguyen DM, Zhao M, Li X, Kunst TF et al. (2006). Phase I study of decitabine- mediated gene expression in patients with cancers involving the lungs, esophagus, or pleura. Clin Cancer Res 12: 5777–5785.

    CAS  PubMed  Google Scholar 

  • Sebti Y, Le Maux A, Gros F, De Guibert S, Pangault C, Rouas-Freiss N et al. (2007). Expression of functional soluble human leucocyte antigen-G molecules in lymphoproliferative disorders. Br J Haematol 138: 202–212.

    CAS  PubMed  Google Scholar 

  • Seliger B . (2008). Molecular mechanisms of MHC class I abnormalities and APM components in human tumors. Cancer Immunol Immunother; e-pub ahead of print.

  • Seliger B, Maeurer MJ, Ferrone S . (2000). Antigen-processing machinery breakdown and tumor growth. Immunol Today 21: 455–464.

    CAS  PubMed  Google Scholar 

  • Serrano A, Tanzarella S, Lionello I, Mendez R, Traversari C, Ruiz-Cabello F et al. (2001). Reexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2′-deoxycytidine treatment. Int J Cancer 94: 243–251.

    CAS  PubMed  Google Scholar 

  • Setiadi AF, David MD, Seipp RP, Hartikainen JA, Gopaul R, Jefferies WA . (2007). Epigenetic control of the immune escape mechanisms in malignant carcinomas. Mol Cell Biol 27: 7886–7894.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheu JJ, Shih IM . (2007). Clinical and biological significance of HLA-G expression in ovarian cancer. Semin Cancer Biol 17: 436–443.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Dave JR, Peterson CL . (2006). Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311: 844–847.

    CAS  PubMed  Google Scholar 

  • Sigalotti L, Altomonte M, Colizzi F, Degan M, Rupolo M, Zagonel V et al. (2003). 5-Aza-2′-deoxycytidine (decitabine) treatment of hematopoietic malignancies: a multimechanism therapeutic approach? Blood 101: 4644–4646; as comment on Blood (2002); 100: 2957–2964.

    CAS  PubMed  Google Scholar 

  • Sigalotti L, Fratta E, Coral S, Tanzarella S, Danielli R, Colizzi F et al. (2004). Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2′-deoxycytidine. Cancer Res 64: 9167–9171.

    CAS  PubMed  Google Scholar 

  • Sims III RJ, Nishioka K, Reinberg D . (2003). Histone lysine methylation: a signature for chromatin function. Trends Genet 19: 629–639.

    CAS  PubMed  Google Scholar 

  • Singh NP, Yolcu ES, Taylor DD, Gercel-Taylor C, Metzinger DS, Dreisbach SK et al. (2003). A novel approach to cancer immunotherapy: tumor cells decorated with CD80 generate effective antitumor immunity. Cancer Res 63: 4067–4073.

    CAS  PubMed  Google Scholar 

  • Sontheimer EJ, Carthew RW . (2005). Silence from within: endogenous siRNAs and miRNAs. Cell 122: 9–12.

    CAS  PubMed  Google Scholar 

  • Szyf M . (2005). DNA methylation and demethylation as targets for anticancer therapy. Biochemistry (Moscow) 70: 533–549.

    CAS  Google Scholar 

  • Takamura Y, Ikeda H, Kanaseki T, Toyota M, Tokino T, Imai K et al. (2004). Regulation of MHC class II expression in glioma cells by class II transactivator (CIITA). Glia 45: 392–405.

    PubMed  Google Scholar 

  • Tamori Y, Tan X, Nakagawa K, Takai E, Akagi J, Kageshita T et al. (2005). Clinical significance of MHC class II-associated invariant chain expression in human gastric carcinoma. Oncol Rep 14: 873–877.

    CAS  PubMed  Google Scholar 

  • Tomasi TB, Magner WJ, Khan AN . (2006). Epigenetic regulation of immune escape genes in cancer. Cancer Immunol Immunother 10: 1159–1184.

    Google Scholar 

  • van den Elsen PJ, van der SN, Vietor HE, Wilson L, van Zutphen M, Gobin SJ . (2000). Lack of CIITA expression is central to the absence of antigen presentation functions of trophoblast cells and is caused by methylation of the IFN-gamma inducible promoter (PIV) of CIITA. Hum Immunol 61: 850–862.

    CAS  PubMed  Google Scholar 

  • van der Stoep N, Biesta P, Quinten E, van den Elsen PJ . (2002). Lack of IFN-gamma-mediated induction of the class II transactivator (CIITA) through promoter methylation is predominantly found in developmental tumor cell lines. Int J Cancer 97: 501–507.

    CAS  PubMed  Google Scholar 

  • Verfaillie C, Kay N, Miller W, McGlave P . (1990). Diminished A-LAK cytotoxicity and proliferation accompany disease progression in chronic myelogenous leukemia. Blood 76: 401–408.

    CAS  PubMed  Google Scholar 

  • Villar-Garea A, Esteller M . (2004). Histone deacetylase inhibitors: understanding a new wave of anticancer agents. Int J Cancer 112: 171–178.

    CAS  PubMed  Google Scholar 

  • Wang E, Panelli MC, Marincola FM . (2005). Understanding the response to immunotherapy in humans. Springer Semin Immunopathol 1: 105–117.

    Google Scholar 

  • Wassenegger M . (2005). The role of the RNAi machinery in heterochromatin formation. Cell 122: 13–16.

    CAS  PubMed  Google Scholar 

  • Whiteside T, Campoli M, Ferrone S . (2005). Tumor induced immune suppression mechanisms and possible solutions. In: Nagorsen D, Marincola FM (eds). Analyzing T Cell Responses. How to Analyze Cellular Immune Responses Against Tumor Associated Antigens. Springer-Verlag: Netherlands, 43–81.

    Google Scholar 

  • Wijermans P, Lubbert M, Verhoef G, Bosly A, Ravoet C, Andre M, et al. (2000). Low-dose 5-aza-2′-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients. J Clin Oncol 18: 956–962.

    CAS  PubMed  Google Scholar 

  • Wischhusen J, Waschbisch A, Wiendl H . (2007). Immune-refractory cancers and their little helpers-an extended role for immunetolerogenic MHC molecules HLA-G and HLA-E? Semin Cancer Biol 17: 459–468.

    CAS  PubMed  Google Scholar 

  • Wright KL, Ting JP . (2006). Epigenetic regulation of MHC-II and CIITA genes. Trends Immunol 27: 405–412.

    CAS  PubMed  Google Scholar 

  • Ye SR, Yang H, Li K, Dong DD, Lin XM, Yie SM . (2007). Human leukocyte antigen G expression: as a significant prognostic indicator for patients with colorectal cancer. Mod Pathol 20: 375–383.

    CAS  PubMed  Google Scholar 

  • Yie SM, Yang H, Ye SR, Li K, Dong DD, Lin XM . (2007a). Expression of human leukocyte antigen G (HLA-G) correlates with poor prognosis in gastric carcinoma. Ann Surg Oncol 14: 2721–2729.

    PubMed  Google Scholar 

  • Yie SM, Yang H, Ye SR, Li K, Dong DD, Lin XM . (2007b). Expression of human leucocyte antigen G (HLA-G) is associated with prognosis in non-small cell lung cancer. Lung Cancer 58: 267–274.

    PubMed  Google Scholar 

  • Yu J, Angelin-Duclos C, Greenwood J, Liao J, Calame K . (2000). Transcriptional repression by blimp-1 (PRDI-BF1) involves recruitment of histone deacetylase. Mol Cell Biol 20: 2592–2603.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Ferrone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campoli, M., Ferrone, S. HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene 27, 5869–5885 (2008). https://doi.org/10.1038/onc.2008.273

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.273

Keywords

This article is cited by

Search

Quick links