Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Heterozygous mutations in the tumor suppressor gene PATCHED provoke basal cell carcinoma-like features in human organotypic skin cultures

Abstract

Basal cell carcinoma of the skin is the most common type of cancer in humans. The majority of these tumors displays aberrant activation of the SONIC HEDGEHOG (SHH)/PATCHED pathway, triggered by mutations in the PATCHED tumor suppressor gene, which encodes a transmembrane receptor of SHH. In this study, we took advantage of the natural genotype (PATCHED+/−) of healthy keratinocytes expanded from patients with the nevoid basal cell carcinoma or Gorlin syndrome to mimic heterozygous somatic mutations thought to occur in the PATCHED gene early upon basal cell carcinoma development in the general population. PATCHED+/− epidermis developed on a dermal equivalent containing wild-type (WT) PATCHED+/+ fibroblasts exhibited striking invasiveness and hyperproliferation, as well as marked differentiation impairment. Deciphering the phenotype of PATCHED+/− keratinocytes revealed slight increases of the transcriptional activators GLI1 and GLI2—the latter known to provoke basal cell carcinoma-like tumors when overexpressed in transgenic mice. PATCHED+/− keratinocytes also showed a substantial increase of the cell cycle regulator cyclin D1. These data show for the first time the physiological impact of constitutive heterozygous PATCHED mutations in primary human keratinocytes and strongly argue for a yet elusive mechanism of haploinsufficiency leading to cancer proneness.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Adolphe C, Hetherington R, Ellis T, Wainwright B . (2006). Patched1 functions as a gatekeeper by promoting cell cycle progression. Cancer Res 66: 2081–2088.

    Article  CAS  Google Scholar 

  • Aszterbaum M, Epstein J, Oro A, Douglas V, LeBoit PE, Scott MP et al. (1999). Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nat Med 5: 1285–1291.

    Article  CAS  Google Scholar 

  • Bernerd F, Asselineau D, Vioux C, Chevallier-Lagente O, Bouadjar B, Sarasin A et al. (2001). Clues to epidermal cancer proneness revealed by reconstruction of DNA repair-deficient xeroderma pigmentosum skin in vitro. Proc Natl Acad Sci USA 98: 7817–7822.

    Article  CAS  Google Scholar 

  • Bigelow RL, Jen EY, Delehedde M, Chari NS, McDonnell TJ . (2005). Sonic hedgehog induces epidermal growth factor dependent matrix infiltration in HaCaT keratinocytes. J Invest Dermatol 124: 457–465.

    Article  CAS  Google Scholar 

  • Boutet N, Bignon YJ, Drouin-Garraud V, Sarda P, Longy M, Lacombe D et al. (2003). Spectrum of PTCH1 mutations in French patients with Gorlin syndrome. J Invest Dermatol 121: 478–481.

    Article  CAS  Google Scholar 

  • Brellier F, Valin A, Chevallier-Lagente O, Gorry P, Avril MF, Magnaldo T . (2008). Ultraviolet responses of Gorlin syndrome primary skin cells. Br J Dermatol (28 May 2008, e-pub ahead of print).

  • Chidambaram A, Dean M . (1996). Genetics of the nevoid basal cell carcinoma syndrome. Adv Cancer Res 70: 49–61.

    Article  CAS  Google Scholar 

  • Dahmane N, Lee J, Robins P, Heller P, Ruiz i Altaba A . (1997). Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature 389: 876–881.

    Article  CAS  Google Scholar 

  • DePinho RA . (2000). The age of cancer. Nature 408: 248–254.

    Article  CAS  Google Scholar 

  • Evans T, Boonchai W, Shanley S, Smyth I, Gillies S, Georgas K et al. (2000). The spectrum of patched mutations in a collection of Australian basal cell carcinomas. Hum Mutat 16: 43–48.

    Article  CAS  Google Scholar 

  • Fan H, Khavari PA . (1999). Sonic hedgehog opposes epithelial cell cycle arrest. J Cell Biol 147: 71–76.

    Article  CAS  Google Scholar 

  • Gailani MR, Stahle-Backdahl M, Leffell DJ, Glynn M, Zaphiropoulos PG, Pressman C et al. (1996). The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet 14: 78–81.

    Article  CAS  Google Scholar 

  • Gorlin RJ . (1987). Nevoid basal-cell carcinoma syndrome. Medicine (Baltimore) 66: 98–113.

    Article  CAS  Google Scholar 

  • Grachtchouk M, Mo R, Yu S, Zhang X, Sasaki H, Hui CC et al. (2000). Basal cell carcinomas in mice overexpressing Gli2 in skin. Nat Genet 24: 216–217.

    Article  CAS  Google Scholar 

  • Hahn H, Christiansen J, Wicking C, Zaphiropoulos PG, Chidambaram A, Gerrard B et al. (1996). A mammalian patched homolog is expressed in target tissues of sonic hedgehog and maps to a region associated with developmental abnormalities. J Biol Chem 271: 12125–12128.

    Article  CAS  Google Scholar 

  • Johnson RL, Rothman AL, Xie J, Goodrich LV, Bare JW, Bonifas JM et al. (1996). Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272: 1668–1671.

    Article  CAS  Google Scholar 

  • Kenney AM, Rowitch DH . (2000). Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol 20: 9055–9067.

    Article  CAS  Google Scholar 

  • Marigo V, Davey RA, Zuo Y, Cunningham JM, Tabin CJ . (1996). Biochemical evidence that patched is the Hedgehog receptor. Nature 384: 176–179.

    Article  CAS  Google Scholar 

  • Mill P, Mo R, Fu H, Grachtchouk M, Kim PC, Dlugosz AA et al. (2003). Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev 17: 282–294.

    Article  CAS  Google Scholar 

  • Nilsson M, Unden AB, Krause D, Malmqwist U, Raza K, Zaphiropoulos PG et al. (2000). Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc Natl Acad Sci USA 97: 3438–3443.

    Article  CAS  Google Scholar 

  • Oro AE, Higgins KM, Hu Z, Bonifas JM, Epstein Jr EH, Scott MP . (1997). Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276: 817–821.

    Article  CAS  Google Scholar 

  • Pruvost-Balland C, Gorry P, Boutet N, Magnaldo T, Mamelle G, Margulis A et al. (2006). [Clinical and genetic study in 22 patients with basal cell nevus syndrome]. Ann Dermatol Venereol 133: 117–123.

    Article  CAS  Google Scholar 

  • Regl G, Kasper M, Schnidar H, Eichberger T, Neill GW, Ikram MS et al. (2004). The zinc-finger transcription factor GLI2 antagonizes contact inhibition and differentiation of human epidermal cells. Oncogene 23: 1263–1274.

    Article  CAS  Google Scholar 

  • Reifenberger J, Wolter M, Knobbe CB, Kohler B, Schonicke A, Scharwachter C et al. (2005). Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 152: 43–51.

    Article  CAS  Google Scholar 

  • Rheinwald JG, Green H . (1975). Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6: 331–343.

    Article  CAS  Google Scholar 

  • Soufir N, Gerard B, Portela M, Brice A, Liboutet M, Saiag P et al. (2006). PTCH mutations and deletions in patients with typical nevoid basal cell carcinoma syndrome and in patients with a suspected genetic predisposition to basal cell carcinoma: a French study. Br J Cancer 95: 548–553.

    Article  CAS  Google Scholar 

  • Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL et al. (1996). The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384: 129–134.

    Article  CAS  Google Scholar 

  • Teh MT, Blaydon D, Chaplin T, Foot NJ, Skoulakis S, Raghavan M et al. (2005). Genomewide single nucleotide polymorphism microarray mapping in basal cell carcinomas unveils uniparental disomy as a key somatic event. Cancer Res 65: 8597–8603.

    Article  CAS  Google Scholar 

  • Unden AB, Zaphiropoulos PG, Bruce K, Toftgard R, Stahle-Backdahl M . (1997). Human patched (PTCH) mRNA is overexpressed consistently in tumor cells of both familial and sporadic basal cell carcinoma. Cancer Res 57: 2336–2340.

    CAS  Google Scholar 

Download references

Acknowledgements

VB, AV, SB, have contributed equally to this work. FB and AV were recipients of PhD fellowships from the CNRS and the Ligue Nationale contre le Cancer, and MESR, respectively. SB was an IGR post-doctoral fellow. We gratefully thank Dr Françoise Bernerd, Dr Howard Green, Ms Valérie Vélasco, Virginie Marty, Dr Rune Toftgard, Dr Paule Opolon, and Marianne Brown-Luedi for their kind help. This work was supported by the CNRS, the ARC (no. 9500), the Fondation de l’Avenir, the SFD and the AFM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M-F Avril or T Magnaldo.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brellier, F., Bergoglio, V., Valin, A. et al. Heterozygous mutations in the tumor suppressor gene PATCHED provoke basal cell carcinoma-like features in human organotypic skin cultures. Oncogene 27, 6601–6606 (2008). https://doi.org/10.1038/onc.2008.260

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.260

Keywords

This article is cited by

Search

Quick links