Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The role of PTEN signaling perturbations in cancer and in targeted therapy

Abstract

The PTEN tumor suppressor was discovered by its homozygous deletion and other mutations in cancer. Since then, PTEN has been shown to be a non-redundant, evolutionarily conserved phosphatase whose function affects diverse cellular progresses such as cell cycle progression, cell proliferation, chemotaxis, apoptosis, aging, muscle contractility, DNA damage response, angiogenesis and cell polarity. In accordance with its ability to influence multiple crucial cellular processes, PTEN has a major role in the pathogenesis of numerous diseases such as diabetes, autism and almost every cancer examined. This review will discuss the diverse ways in which PTEN signaling is modified in cancer, and how these changes correlate with and might possibly affect the action of targeted chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Accili D, Arden KC . (2004). FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117: 421–426.

    CAS  PubMed  Google Scholar 

  • Alessi DR, Caudwell FB, Andjelkovic M, Hemmings BA, Cohen P . (1996). Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinase-1 and p70 S6 kinase. FEBS Lett 399: 333–338.

    CAS  PubMed  Google Scholar 

  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB et al. (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7: 261–269.

    Article  CAS  PubMed  Google Scholar 

  • Ali IU, Schriml LM, Dean M . (1999). Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Natl Cancer Inst 91: 1922–1932.

    CAS  PubMed  Google Scholar 

  • Auger KR, Serunian LA, Soltoff SP, Libby P, Cantley LC . (1989). PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 57: 167–175.

    CAS  PubMed  Google Scholar 

  • Baker SJ . (2007). PTEN enters the nuclear age. Cell 128: 25–28.

    CAS  PubMed  Google Scholar 

  • Barr FG . (2001). Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 20: 5736–5746.

    CAS  PubMed  Google Scholar 

  • Bayascas JR, Leslie NR, Parsons R, Fleming S, Alessi DR . (2005). Hypomorphic mutation of PDK1 suppresses tumorigenesis in PTEN(+/−) mice. Curr Biol 15: 1839–1846.

    CAS  PubMed  Google Scholar 

  • Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA et al. (1995). Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 64: 280–285.

    CAS  PubMed  Google Scholar 

  • Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K et al. (2007). A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12: 395–402.

    CAS  PubMed  Google Scholar 

  • Bose S, Wang SI, Terry MB, Hibshoosh H, Parsons R . (1998). Allelic loss of chromosome 10q23 is associated with tumor progression in breast carcinomas. Oncogene 17: 123–127.

    CAS  PubMed  Google Scholar 

  • Cairns P, Evron E, Okami K, Halachmi N, Esteller M, Herman JG et al. (1998). Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladder cancers. Oncogene 16: 3215–3218.

    CAS  PubMed  Google Scholar 

  • Cairns P, Okami K, Halachmi S, Halachmi N, Esteller M, Herman JG et al. (1997). Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res 57: 4997–5000.

    CAS  PubMed  Google Scholar 

  • Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, Hooi CS et al. (2004). Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 64: 7678–7681.

    CAS  PubMed  Google Scholar 

  • Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM et al. (2007). A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448: 439–444.

    CAS  PubMed  Google Scholar 

  • Chang CJ, Mulholland DJ, Valamehr B, Mosessian S, Sellers WR, Wu H . (2008). PTEN nuclear localization is regulated by oxidative stress and mediates p53-dependent tumor suppression. Mol Cell Biol 28: 3281–3289.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ML, Xu PZ, Peng XD, Chen WS, Guzman G, Yang X et al. (2006). The deficiency of Akt1 is sufficient to suppress tumor development in Pten+/− mice. Genes Dev 20: 1569–1574.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiariello E, Roz L, Albarosa R, Magnani I, Finocchiaro G . (1998). PTEN/MMAC1 mutations in primary glioblastomas and short-term cultures of malignant gliomas. Oncogene 16: 541–545.

    CAS  PubMed  Google Scholar 

  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378: 785–789.

    CAS  PubMed  Google Scholar 

  • Currie RA, Walker KS, Gray A, Deak M, Casamayor A, Downes CP et al. (1999). Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem J 337 (Part 3): 575–583.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dahia PL, Marsh DJ, Zheng Z, Zedenius J, Komminoth P, Frisk T et al. (1997). Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. Cancer Res 57: 4710–4713.

    CAS  PubMed  Google Scholar 

  • Das S, Dixon JE, Cho W . (2003). Membrane-binding and activation mechanism of PTEN. Proc Natl Acad Sci USA 100: 7491–7496.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231–241.

    CAS  PubMed  Google Scholar 

  • Deleris P, Gayral S, Breton-Douillon M . (2006). Nuclear Ptdlns(3,4,5)P3 signaling: an ongoing story. J Cell Biochem 98: 469–485.

    CAS  PubMed  Google Scholar 

  • Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP . (2001). Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet 27: 222–224.

    CAS  PubMed  Google Scholar 

  • Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP . (1998). Pten is essential for embryonic development and tumour suppression. Nat Genet 19: 348–355.

    CAS  PubMed  Google Scholar 

  • Dourdin N, Schade B, Lesurf R, Hallett M, Munn RJ, Cardiff RD et al. (2008). Phosphatase and tensin homologue deleted on chromosome 10 deficiency accelerates tumor induction in a mouse model of ErbB-2 mammary tumorigenesis. Cancer Res 68: 2122–2131.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duerr EM, Rollbrocker B, Hayashi Y, Peters N, Meyer-Puttlitz B, Louis DN et al. (1998). PTEN mutations in gliomas and glioneuronal tumors. Oncogene 16: 2259–2264.

    CAS  PubMed  Google Scholar 

  • Fang X, Yu S, Eder A, Mao M, Bast Jr RC, Boyd D et al. (1999). Regulation of BAD phosphorylation at serine 112 by the Ras-mitogen-activated protein kinase pathway. Oncogene 18: 6635–6640.

    CAS  PubMed  Google Scholar 

  • Feilotter HE, Nagai MA, Boag AH, Eng C, Mulligan LM . (1998). Analysis of PTEN and the 10q23 region in primary prostate carcinomas. Oncogene 16: 1743–1748.

    CAS  PubMed  Google Scholar 

  • Fingar DC, Salama S, Tsou C, Harlow E, Blenis J . (2002). Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 16: 1472–1487.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frattini M, Saletti P, Romagnani E, Martin V, Molinari F, Ghisletta M et al. (2007). PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients. Br J Cancer 97: 1139–1145.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frech M, Andjelkovic M, Ingley E, Reddy KK, Falck JR, Hemmings BA . (1997). High affinity binding of inositol phosphates and phosphoinositides to the pleckstrin homology domain of RAC/protein kinase B and their influence on kinase activity. J Biol Chem 272: 8474–8481.

    CAS  PubMed  Google Scholar 

  • Freeman DJ, Li AG, Wei G, Li HH, Kertesz N, Lesche R et al. (2003). PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell 3: 117–130.

    CAS  PubMed  Google Scholar 

  • Fukuyama M, Rougvie AE, Rothman JH . (2006). C elegans DAF- 18/PTEN mediates nutrient-dependent arrest of cell cycle and growth in the germline. Curr Biol 6: 773–779.

    Google Scholar 

  • Furnari FB, Huang HJ, Cavenee WK . (1998). The phosphoinositol phosphatase activity of PTEN mediates a serum-sensitive G1 growth arrest in glioma cells. Cancer Res 58: 5002–5008.

    CAS  PubMed  Google Scholar 

  • Furnari FB, Lin H, Huang HS, Cavenee WK . (1997). Growth suppression of glioma cells by PTEN requires a functional phosphatase catalytic domain. Proc Natl Acad Sci USA 94: 12479–12484.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Georgescu MM, Kirsch KH, Akagi T, Shishido T, Hanafusa H . (1999). The tumor-suppressor activity of PTEN is regulated by its carboxyl-terminal region. Proc Natl Acad Sci USA 96: 10182–10187.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Georgescu MM, Kirsch KH, Kaloudis P, Yang H, Pavletich NP, Hanafusa H . (2000). Stabilization and productive positioning roles of the C2 domain of PTEN tumor suppressor. Cancer Res 60: 7033–7038.

    CAS  PubMed  Google Scholar 

  • Gil A, Andres-Pons A, Fernandez E, Valiente M, Torres J, Cervera J et al. (2006). Nuclear localization of PTEN by a Ran-dependent mechanism enhances apoptosis: Involvement of an N-terminal nuclear localization domain and multiple nuclear exclusion motifs. Mol Biol Cell 17: 4002–4013.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goberdhan DC, Paricio N, Goodman EC, Mlodzik M, Wilson C . (1999). Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway. Genes Dev 13: 3244–3258.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goswami A, Burikhanov R, de Thonel A, Fujita N, Goswami M, Zhao Y et al. (2005). Binding and phosphorylation of par-4 by akt is essential for cancer cell survival. Mol Cell 20: 33–44.

    CAS  PubMed  Google Scholar 

  • Gupta S, Ramjaun AR, Haiko P, Wang Y, Warne PH, Nicke B et al. (2007). Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129: 957–968.

    CAS  PubMed  Google Scholar 

  • Hwangbo DS, Gershman B, Tu MP, Palmer M, Tatar M . (2004). Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429: 562–566.

    CAS  PubMed  Google Scholar 

  • Iijima M, Devreotes P . (2002). Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109: 599–610.

    CAS  PubMed  Google Scholar 

  • Iijima M, Huang YE, Devreotes P . (2002). Temporal and spatial regulation of chemotaxis. Dev Cell 3: 469–478.

    CAS  PubMed  Google Scholar 

  • Janetopoulos C, Borleis J, Vazquez F, Iijima M, Devreotes P . (2005). Temporal and spatial regulation of phosphoinositide signaling mediates cytokinesis. Dev Cell 8: 467–477.

    CAS  PubMed  Google Scholar 

  • Jhawer M, Goel S, Wilson AJ, Montagna C, Ling YH, Byun DS et al. (2008). PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res 68: 1953–1961.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keller C, Hansen MS, Coffin CM, Capecchi MR . (2004). Pax3:Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Genes Dev 18: 2608–2613.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MJ, Cardiff RD, Desai N, Banach-Petrosky WA, Parsons R, Shen MM et al. (2002). Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci USA 99: 2884–2889.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim RH, Peters M, Jang Y, Shi W, Pintilie M, Fletcher GC et al. (2005). DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell 7: 263–273.

    CAS  PubMed  Google Scholar 

  • Kitamura YI, Kitamura T, Kruse JP, Raum JC, Stein R, Gu W et al. (2005). FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab 2: 153–163.

    CAS  PubMed  Google Scholar 

  • Klarlund JK, Guilherme A, Holik JJ, Virbasius JV, Chawla A, Czech MP . (1997). Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains. Science 275: 1927–1930.

    CAS  PubMed  Google Scholar 

  • Klinghoffer RA, Duckworth B, Valius M, Cantley L, Kazlauskas A . (1996). Platelet-derived growth factor-dependent activation of phosphatidylinositol 3-kinase is regulated by receptor binding of SH2-domain-containing proteins which influence Ras activity. Mol Cell Biol 16: 5905–5914.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kokubo Y, Gemma A, Noro R, Seike M, Kataoka K, Matsuda K et al. (2005). Reduction of PTEN protein and loss of epidermal growth factor receptor gene mutation in lung cancer with natural resistance to gefitinib (IRESSA). Br J Cancer 92: 1711–1719.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laffargue M, Raynal P, Yart A, Peres C, Wetzker R, Roche S et al. (1999). An epidermal growth factor receptor/Gab1 signaling pathway is required for activation of phosphoinositide 3-kinase by lysophosphatidic acid. J Biol Chem 274: 32835–32841.

    CAS  PubMed  Google Scholar 

  • Lagutina I, Conway SJ, Sublett J, Grosveld GC . (2002). Pax3-FKHR knock-in mice show developmental aberrations but do not develop tumors. Mol Cell Biol 22: 7204–7216.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SR, Yang KS, Kwon J, Lee C, Jeong W, Rhee SG . (2002). Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277: 20336–20342.

    CAS  PubMed  Google Scholar 

  • Leslie NR, Bennett D, Lindsay YE, Stewart H, Gray A, Downes CP . (2003). Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J 22: 5501–5510.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li AG, Piluso LG, Cai X, Wei G, Sellers WR, Liu X . (2006). Mechanistic insights into maintenance of high p53 acetylation by PTEN. Mol Cell 23: 575–587.

    PubMed  Google Scholar 

  • Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al. (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943–1947.

    CAS  PubMed  Google Scholar 

  • Li J, Simpson L, Takahashi M, Miliaresis C, Myers MP, Tonks N et al. (1998). The PTEN/MMAC1 tumor suppressor induces cell death that is rescued by the AKT/protein kinase B oncogene. Cancer Res 58: 5667–5672.

    CAS  PubMed  Google Scholar 

  • Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K et al. (2002). PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 8: 1153–1160.

    CAS  PubMed  Google Scholar 

  • Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z et al. (1997). Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 16: 64–67.

    CAS  PubMed  Google Scholar 

  • Lievre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF et al. (2006). KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66: 3992–3995.

    CAS  PubMed  Google Scholar 

  • Lin WM, Forgacs E, Warshal DP, Yeh IT, Martin JS, Ashfaq R et al. (1998). Loss of heterozygosity and mutational analysis of the PTEN/MMAC1 gene in synchronous endometrial and ovarian carcinomas. Clin Cancer Res 4: 2577–2583.

    CAS  PubMed  Google Scholar 

  • Lindsay Y, McCoull D, Davidson L, Leslie NR, Fairservice A, Gray A et al. (2006). Localization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression. J Cell Sci 119: 5160–5168.

    CAS  PubMed  Google Scholar 

  • Liu F, Wagner S, Campbell RB, Nickerson JA, Schiffer CA, Ross AH . (2005a). PTEN enters the nucleus by diffusion. J Cell Biochem 96: 221–234.

    CAS  PubMed  Google Scholar 

  • Liu JL, Sheng X, Hortobagyi ZK, Mao Z, Gallick GE, Yung WK . (2005b). Nuclear PTEN-mediated growth suppression is independent of Akt down-regulation. Mol Cell Biol 25: 6211–6224.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J . (2005). Rheb binds and regulates the mTOR kinase. Curr Biol 15: 702–713.

    CAS  PubMed  Google Scholar 

  • Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP . (2005a). Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121: 179–193.

    CAS  PubMed  Google Scholar 

  • Ma L, Teruya-Feldstein J, Behrendt N, Chen Z, Noda T, Hino O et al. (2005b). Genetic analysis of Pten and Tsc2 functional interactions in the mouse reveals asymmetrical haploinsufficiency in tumor suppression. Genes Dev 19: 1779–1786.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maehama T, Dixon JE . (1998). The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273: 13375–13378.

    CAS  PubMed  Google Scholar 

  • Manning BD, Cantley LC . (2007). AKT/PKB signaling: navigating downstream. Cell 129: 1261–1274.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC . (2002). Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10: 151–162.

    CAS  PubMed  Google Scholar 

  • Marsh DJ, Dahia PL, Zheng Z, Liaw D, Parsons R, Gorlin RJ et al. (1997). Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet 16: 333–334.

    CAS  PubMed  Google Scholar 

  • Moasser MM . (2007). The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26: 6469–6487.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA et al. (1998). The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci USA 95: 13513–13518.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA et al. (2004). PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6: 117–127.

    CAS  PubMed  Google Scholar 

  • Nakamura N, Ramaswamy S, Vazquez F, Signoretti S, Loda M, Sellers WR . (2000). Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol Cell Biol 20: 8969–8982.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogg S, Ruvkun G . (1998). The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol Cell 2: 887–893.

    CAS  PubMed  Google Scholar 

  • Okumura K, Mendoza M, Bachoo RM, DePinho RA, Cavenee WK, Furnari FB . (2006). PCAF modulates PTEN activity. J Biol Chem 281: 26562–26568.

    CAS  PubMed  Google Scholar 

  • Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M et al. (2007). Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 13: 1203–1210.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M et al. (2005). KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2: e17.

    PubMed  PubMed Central  Google Scholar 

  • Parsons DW, Wang TL, Samuels Y, Bardelli A, Cummins JM, DeLong L et al. (2005). Colorectal cancer: mutations in a signalling pathway. Nature 436: 792.

    CAS  PubMed  Google Scholar 

  • Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM et al. (1999). Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA 96: 1563–1568.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Potter CJ, Pedraza LG, Xu T . (2002). Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4: 658–665.

    CAS  PubMed  Google Scholar 

  • Puc J, Keniry M, Li HS, Pandita TK, Choudhury AD, Memeo L et al. (2005). Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell 7: 193–204.

    CAS  PubMed  Google Scholar 

  • Puc J, Parsons R . (2005). PTEN loss inhibits CHK1 to cause double stranded-DNA breaks in cells. Cell Cycle 4: 927–929.

    CAS  PubMed  Google Scholar 

  • Raitano AB, Halpern JR, Hambuch TM, Sawyers CL . (1995). The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci USA 92: 11746–11750.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaswamy S, Nakamura N, Vazquez F, Batt DB, Perera S, Roberts TM et al. (1999). Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci USA 96: 2110–2115.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasheed BK, Stenzel TT, McLendon RE, Parsons R, Friedman AH, Friedman HS et al. (1997). PTEN gene mutations are seen in high-grade but not in low-grade gliomas. Cancer Res 57: 4187–4190.

    CAS  PubMed  Google Scholar 

  • Rubin MA, Gerstein A, Reid K, Bostwick DG, Cheng L, Parsons R et al. (2000). 10q23.3 loss of heterozygosity is higher in lymph node-positive (pT2–3,N+) versus lymph node-negative (pT2–3,N0) prostate cancer. Hum Pathol 31: 504–508.

    CAS  PubMed  Google Scholar 

  • Saal LH, Gruvberger-Saal SK, Persson C, Lovgren K, Jumppanen M, Staaf J et al. (2008). Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nat Genet 40: 102–107.

    CAS  PubMed  Google Scholar 

  • Saal LH, Holm K, Maurer M, Memeo L, Su T, Wang X et al. (2005). PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65: 2554–2559.

    CAS  PubMed  Google Scholar 

  • Saal LH, Johansson P, Holm K, Gruvberger-Saal SK, She QB, Maurer M et al. (2007). Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci USA 104: 7564–7569.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samuels Y, Diaz Jr LA, Schmidt-Kittler O, Cummins JM, Delong L, Cheong I et al. (2005). Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7: 561–573.

    CAS  PubMed  Google Scholar 

  • Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al. (2004). High frequency of mutations of the PIK3CA gene in human cancers. Science 304: 554.

    CAS  PubMed  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098–1101.

    CAS  PubMed  Google Scholar 

  • Sasaki AT, Janetopoulos C, Lee S, Charest PG, Takeda K, Sundheimer LW et al. (2007). G protein-independent Ras/PI3K/F-actin circuit regulates basic cell motility. J Cell Biol 178: 185–191.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serunian LA, Auger KR, Roberts TM, Cantley LC . (1990). Production of novel polyphosphoinositides in vivo is linked to cell transformation by polyomavirus middle T antigen. J Virol 64: 4718–4725.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shao X, Tandon R, Samara G, Kanki H, Yano H, Close LG et al. (1998). Mutational analysis of the PTEN gene in head and neck squamous cell carcinoma. Int J Cancer 77: 684–688.

    CAS  PubMed  Google Scholar 

  • She QB, Solit DB, Ye Q, O’Reilly KE, Lobo J, Rosen N . (2005). The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell 8: 287–297.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP et al. (2007). Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128: 157–170.

    CAS  PubMed  Google Scholar 

  • Skolnik EY, Margolis B, Mohammadi M, Lowenstein E, Fischer R, Drepps A et al. (1991). Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65: 83–90.

    CAS  PubMed  Google Scholar 

  • Sorensen PH, Lynch JC, Qualman SJ, Tirabosco R, Lim JF, Maurer HM et al. (2002). PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children′s oncology group. J Clin Oncol 20: 2672–2679.

    CAS  PubMed  Google Scholar 

  • Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y et al. (2001). Regulation of PTEN transcription by p53. Mol Cell 8: 317–325.

    CAS  PubMed  Google Scholar 

  • Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T et al. (1998). Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95: 29–39.

    CAS  PubMed  Google Scholar 

  • Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH et al. (1997). Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15: 356–362.

    CAS  PubMed  Google Scholar 

  • Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF et al. (1997). Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277: 567–570.

    CAS  PubMed  Google Scholar 

  • Tanaka K, Horiguchi K, Yoshida T, Takeda M, Fujisawa H, Takeuchi K et al. (1999). Evidence that a phosphatidylinositol 3,4,5-trisphosphate-binding protein can function in nucleus. J Biol Chem 274: 3919–3922.

    CAS  PubMed  Google Scholar 

  • Tashiro H, Blazes MS, Wu R, Cho KR, Bose S, Wang SI et al. (1997). Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res 57: 3935–3940.

    CAS  PubMed  Google Scholar 

  • Tee AR, Fingar DC, Manning BD, Kwiatkowski DJ, Cantley LC, Blenis J . (2002). Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA 99: 13571–13576.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J . (2003). Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13: 1259–1268.

    CAS  PubMed  Google Scholar 

  • Teng DH, Hu R, Lin H, Davis T, Iliev D, Frye C et al. (1997). MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res 57: 5221–5225.

    CAS  PubMed  Google Scholar 

  • Tolkacheva T, Boddapati M, Sanfiz A, Tsuchida K, Kimmelman AC, Chan AM . (2001). Regulation of PTEN binding to MAGI-2 by two putative phosphorylation sites at threonine 382 and 383. Cancer Res 61: 4985–4989.

    CAS  PubMed  Google Scholar 

  • Torres J, Rodriguez J, Myers MP, Valiente M, Graves JD, Tonks NK et al. (2003). Phosphorylation-regulated cleavage of the tumor suppressor PTEN by caspase-3: implications for the control of protein stability and PTEN-protein interactions. J Biol Chem 278: 30652–30660.

    CAS  PubMed  Google Scholar 

  • Trotman LC, Alimonti A, Scaglioni PP, Koutcher JA, Cordon-Cardo C, Pandolfi PP . (2006). Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441: 523–527.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trotman LC, Wang X, Alimonti A, Chen Z, Teruya-Feldstein J, Yang H et al. (2007). Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 128: 141–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vasudevan KM, Burikhanov R, Goswami A, Rangnekar VM . (2007). Suppression of PTEN expression is essential for antiapoptosis and cellular transformation by oncogenic Ras. Cancer Res 67: 10343–10350.

    CAS  PubMed  Google Scholar 

  • Vazquez F, Grossman SR, Takahashi Y, Rokas MV, Nakamura N, Sellers WR . (2001). Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex. J Biol Chem 276: 48627–48630.

    CAS  PubMed  Google Scholar 

  • Vazquez F, Ramaswamy S, Nakamura N, Sellers WR . (2000). Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol 20: 5010–5018.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeij J, Teugels E, Bourgain C, Xiangming J, in’t Veld P, Ghislain V et al. (2008). Genomic activation of the EGFR and HER2-neu genes in a significant proportion of invasive epithelial ovarian cancers. BMC Cancer 8: 3.

    PubMed  PubMed Central  Google Scholar 

  • Vivanco I, Palaskas N, Tran C, Finn SP, Getz G, Kennedy NJ et al. (2007). Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell 11: 555–569.

    CAS  PubMed  Google Scholar 

  • Wallasch C, Weiss FU, Niederfellner G, Jallal B, Issing W, Ullrich A . (1995). Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J 14: 4267–4275.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SI, Parsons R, Ittmann M . (1998). Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin Cancer Res 4: 811–815.

    CAS  PubMed  Google Scholar 

  • Wang SI, Puc J, Li J, Bruce JN, Cairns P, Sidransky D et al. (1997). Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res 57: 4183–4186.

    CAS  PubMed  Google Scholar 

  • Wang X, Trotman LC, Koppie T, Alimonti A, Chen Z, Gao Z et al. (2007). NEDD4–1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128: 129–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiencke JK, Zheng S, Jelluma N, Tihan T, Vandenberg S, Tamguney T et al. (2007). Methylation of the PTEN promoter defines low-grade gliomas and secondary glioblastoma. Neuro Oncol 9: 271–279.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME . (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326–1331.

    CAS  PubMed  Google Scholar 

  • Yang H, Kong W, He L, Zhao JJ, O’Donnell JD, Wang J et al. (2008). MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 68: 425–433.

    CAS  PubMed  Google Scholar 

  • Yao D, Alexander CL, Quinn JA, Chan WC, Wu H, Greenhalgh DA . (2008). Fos cooperation with PTEN loss elicits keratoacanthoma not carcinoma, owing to p53/p21WAF-induced differentiation triggered by GSK3{beta} inactivation and reduced AKT activity. J Cell Sci 121: 1758–1769.

    CAS  PubMed  Google Scholar 

  • You MJ, Castrillon DH, Bastian BC, O’Hagan RC, Bosenberg MW, Parsons R et al. (2002). Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proc Natl Acad Sci USA 99: 1455–1460.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ . (1996). Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14–3–3 not BCL-X(L). Cell 87: 619–628.

    CAS  PubMed  Google Scholar 

  • Zhang H, Cicchetti G, Onda H, Koon HB, Asrican K, Bajraszewski N et al. (2003a). Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J Clin Invest 112: 1223–1233.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D . (2003b). Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5: 578–581.

    CAS  PubMed  Google Scholar 

  • Zhao L, Vogt PK . (2008). Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci USA 105: 2652–2657.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Hampel H, Thiele H, Gorlin RJ, Hennekam RC, Parisi M et al. (2001). Association of germline mutation in the PTEN tumour suppressor gene and Proteus and Proteus-like syndromes. Lancet 358: 210–211.

    CAS  PubMed  Google Scholar 

  • Zhou XP, Loukola A, Salovaara R, Nystrom-Lahti M, Peltomaki P, de la Chapelle A et al. (2002). PTEN mutational spectra, expression levels, and subcellular localization in microsatellite stable and unstable colorectal cancers. Am J Pathol 161: 439–447.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou XP, Marsh DJ, Hampel H, Mulliken JB, Gimm O, Eng C . (2000). Germline and germline mosaic PTEN mutations associated with a Proteus-like syndrome of hemihypertrophy, lower limb asymmetry, arteriovenous malformations and lipomatosis. Hum Mol Genet 9: 765–768.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Parsons Laboratory for the critical reading of this paper. MK received support from the DOD (PC050068). RP received support from the Avon Foundation, the Octoberwoman Foundation, and the NCI (Grants CA097403 and CA082783).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Parsons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keniry, M., Parsons, R. The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene 27, 5477–5485 (2008). https://doi.org/10.1038/onc.2008.248

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.248

Keywords

This article is cited by

Search

Quick links