Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Differences and evolution of the methods for the assessment of microsatellite instability

Abstract

Microsatellite instability (MSI) originates from the systematic accumulation of uncorrected deletion/insertion in repetitive DNA tracts in cancer cells with a deficient mismatch repair system. Among colorectal cancers, the MSI signature identifies hereditary cases arising in patients with germline mutations in hMLH1, hMSH2, PMS2 and a fraction of those with hMSH6 mutations, as well as sporadic cancers with epigenetic hMLH1 promoter hypermethylation. Considering the specific pathogenesis, pathological features, natural history and response to 5-fluoro-uracil-based chemotherapy of the MSI cancers, confusion about the genetic markers for MSI recognition seems surprising. In this clinically relevant field, an agreement has not been reached concerning the use of di- or mononucleotide markers for MSI assessment. The Revised Bethesda Guidelines still recommend a panel of markers consisting of mono- and dinucleotides, despite being questioned whether it is congruous to continue to use dinucleotide markers for MSI identification. In any event, no single marker is accurate enough for MSI testing, and an awareness of their pros and cons is required for proper interpretation of results. In recent years, several papers have reported different prevalence of MSI in unrelated series, largely depending on the detection and classification method, suggesting that MSI test interpretation also requires the understanding of the phenomenon rather than simply the crude satisfaction of panel recommendations. Inaccuracies can otherwise lead to under- or overdiagnosis and inaccurate disease classification, which always have a negative impact on the clinical practice of medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Aaltonen L, Peltomaki P, Leach F, Sistonen P, Pylkkanen L, Mecklin J et al. (1993). Clues to the pathogenesis of familial colorectal cancer. Science 260: 812–816.

    Article  CAS  PubMed  Google Scholar 

  • Aaltonen LA, Salovaara R, Kristo P, Canzian F, Hemminki A, Peltomaki P et al. (1998). Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N Engl J Med 338: 1481–1487.

    Article  CAS  PubMed  Google Scholar 

  • Ahuja N, Mohan AL, Li Q, Stolker JM, Herman JG, Hamilton SR et al. (1997). Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res 57: 3370–3374.

    CAS  PubMed  Google Scholar 

  • Bocker T, Diermann J, Friedl W, Gebert J, Holinski-Feder E, Karner-Hanusch J et al. (1997). Microsatellite instability analysis: a multicenter study for reliability and quality control. Cancer Res 57: 4739–4743.

    CAS  PubMed  Google Scholar 

  • Boland C, Goel A . (2005). Somatic evolution of cancer cells. Semin Cancer Biol 15: 436–450.

    Article  CAS  PubMed  Google Scholar 

  • Boland CR . (2007). Clinical uses of microsatellite instability testing in colorectal cancer: an ongoing challenge. J Clin Oncol 25: 754–756.

    Article  CAS  PubMed  Google Scholar 

  • Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW et al. (1998). A national cancer institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58: 5248–5257.

    CAS  PubMed  Google Scholar 

  • Carethers JM, Smith EJ, Behling CA, Nguyen L, Tajima A, Doctolero RT et al. (2004). Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer. Gastroenterology 126: 394–401.

    Article  CAS  PubMed  Google Scholar 

  • Cawkwell L, Li D, Lewis F, Martin I, Dixon M, Quirke P . (1995). Microsatellite instability in colorectal cancer: improved assessment using fluorescent polymerase chain reaction. Gastroenterology 109: 465–471.

    Article  CAS  PubMed  Google Scholar 

  • de la Chapelle A . (2003). Microsatellite instability. N Engl J Med 349: 209–210.

    Article  PubMed  Google Scholar 

  • Dietmaier W, Wallinger S, Bocker T, Kullmann F, Fishel R, Ruschoff J . (1997). Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res 57: 4749–4756.

    CAS  PubMed  Google Scholar 

  • Fishel R, Lescoe M, Rao M, Copeland N, Jenkins N, Garber J et al. (1993). The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75: 1027–1038.

    Article  CAS  PubMed  Google Scholar 

  • Giuffre G, Muller A, Brodegger T, Bocker-Edmonston T, Gebert J, Kloor M et al. (2005). Microsatellite analysis of hereditary nonpolyposis colorectal cancer-associated colorectal adenomas by laser-assisted microdissection: correlation with mismatch repair protein expression provides new insights in early steps of tumorigenesis. J Mol Diagn 7: 160–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel A, Nagasaka T, Arnold C, Inoue T, Hamilton C, Niedzwiecki D et al. (2007). The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology 132: 127–138.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Garcia I, Moreno V, Navarro M, Marti-Rague J, Marcuello E, Benasco C et al. (2000). Standardized approach for microsatellite instability detection in colorectal carcinomas. J Natl Cancer Inst 92: 544–549.

    Article  CAS  PubMed  Google Scholar 

  • Grady W . (2004). Genomic instability and colon cancer. Cancer Metastasis Rev 23: 11–27.

    Article  CAS  PubMed  Google Scholar 

  • Gruber S . (2006). New developments in Lynch syndrome (hereditary nonpolyposis colorectal cancer) and mismatch repair gene testing. Gastroenterology 130: 577–587.

    Article  CAS  PubMed  Google Scholar 

  • Gryfe R, Kim H, Hsieh ETK, Aronson MD, Holowaty EJ, Bull SB et al. (2000). Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 342: 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM et al. (1995). The molecular basis of Turcot's syndrome. N Engl J Med 332: 839–847.

    Article  CAS  PubMed  Google Scholar 

  • Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P et al. (2005). Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 352: 1851–1860.

    Article  CAS  PubMed  Google Scholar 

  • Hemminki A, Peltomaki P, Mecklin J, Jarvinen H, Salovaara R, Nystrom-Lahti M et al. (1994). Loss of the wild type MLH1 gene is a feature of hereditary nonpolyposis colorectal cancer. Nat Genet 8: 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa J-PJ et al. (1998). Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA 95: 6870–6875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang J-M, Cottu PH, Thuille B, Salmon RJ, Thomas G, Hamelin R . (1997). BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines. Cancer Res 57: 300–303.

    CAS  PubMed  Google Scholar 

  • Iino H, Jass J, Simms L, Young J, Leggett B, Ajioka Y et al. (1999). DNA microsatellite instability in hyperplastic polyps, serrated adenomas, and mixed polyps: a mild mutator pathway for colorectal cancer? J Clin Pathol 52: 5–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ionov Y, Peinado M, Malkhosyan S, Shibata D, Perucho M . (1993). Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363: 558–561.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins MA, Hayashi S, O'Shea AM, Burgart LJ, Smyrk TC, Shimizu D et al. (2007). Pathology features in Bethesda guidelines predict colorectal cancer microsatellite instability: a population-based study. Gastroenterology 133: 48–56.

    Article  CAS  PubMed  Google Scholar 

  • Jiricny J . (2006). The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7: 335–346.

    Article  CAS  PubMed  Google Scholar 

  • Kane MF, Loda M, Gaida GM, Lipman J, Mishra R, Goldman H et al. (1997). Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57: 808–811.

    CAS  PubMed  Google Scholar 

  • Kim GP, Colangelo LH, Wieand HS, Paik S, Kirsch IR, Wolmark N et al. (2007). Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project Collaborative Study. J Clin Oncol 25: 767–772.

    Article  CAS  PubMed  Google Scholar 

  • Kinzler K, Vogelstein B . (1996). Lessons from hereditary colorectal cancer. Cell 87: 159–170.

    Article  CAS  PubMed  Google Scholar 

  • Koi M, Umar A, Chauhan DP, Cherian SP, Carethers JM, Kunkei TA et al. (1994). Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reduces N-methyl-N′-nitro-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLH1 mutation. Cancer Res 54: 4308–4312.

    CAS  PubMed  Google Scholar 

  • Laghi L, Bianchi P, Roncalli M, Malesci A . (2004). Re: revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96: 1402a–1403a.

    Article  Google Scholar 

  • Laiho P, Launonen V, Lahermo P, Esteller M, Guo M, Herman JG et al. (2002). Low-level microsatellite instability in most colorectal carcinomas. Cancer Res 62: 1166–1170.

    CAS  PubMed  Google Scholar 

  • Liu B, Parsons R, Papadopoulos N, Nicolaides N, Lynch H, Watson P et al. (1996). Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nat Med 2: 169–174.

    Article  CAS  PubMed  Google Scholar 

  • Lothe RA, Peltomaki P, Meling GI, Aaltonen LA, Nystrom-Lahti M, Pylkkanen L et al. (1993). Genomic instability in colorectal cancer: relationship to clinicopathological variables and family history. Cancer Res 53: 5849–5852.

    CAS  PubMed  Google Scholar 

  • Loukola A, Eklin K, Laiho P, Salovaara R, Kristo P, Jarvinen H et al. (2001). Microsatellite marker analysis in screening for hereditary nonpolyposis colorectal cancer (HNPCC). Cancer Res 61: 4545–4549.

    CAS  PubMed  Google Scholar 

  • Maddox J . (1993). Competition and the death of science. Nature 363: 667.

    Article  CAS  PubMed  Google Scholar 

  • Malesci A, Laghi L, Bianchi P, Delconte G, Randolph A, Torri V et al. (2007). Reduced likelihood of metastases in patients with microsatellite-unstable colorectal cancer. Clin Cancer Res 13: 3831–3839.

    Article  CAS  PubMed  Google Scholar 

  • Malkhosyan S, Rampino N, Yamamoto H, Perucho M . (1996). Frameshift mutator mutations. Nature 382: 499–500.

    Article  CAS  PubMed  Google Scholar 

  • Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J et al. (1995). Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 268: 1336–1338.

    Article  CAS  PubMed  Google Scholar 

  • Miyaki M, Konishi M, Tanaka K, Kikuchi-Yanoshita R, Muraoka M, Yasuno M et al. (1997). Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet 17: 271–272.

    Article  CAS  PubMed  Google Scholar 

  • Moslein G, Tester D, Lindor N, Honchel R, Cunningham J, French A et al. (1996). Microsatellite instability and mutation analysis of hMSH2 and hMLH1 in patients with sporadic, familial and hereditary colorectal cancer. Hum Mol Genet 5: 1245–1252.

    Article  CAS  PubMed  Google Scholar 

  • Muller A, Beckmann C, Westphal G, Bocker Edmonston T, Friedrichs N, Dietmaier W et al. (2006). Prevalence of the mismatch-repair-deficient phenotype in colonic adenomas arising in HNPCC patients: results of a 5-year follow-up study. Int J Colorectal Dis 21: 632–641.

    Article  PubMed  Google Scholar 

  • NCBI. (2007). OnlineMendelian Inheritance in Man (OMIM: http://www.ncbi.nlm.nih.gov/sites/entrez?db=OMIM). Accession # hMSH2, 690309; hMLH1, *1204536; PMS2, +600259; hMSH6, +600678.

  • Nicolaides N, Papadopoulos N, Liu B, Wei Y, Carter K, Ruben S et al. (1994). Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371: 75–80.

    Article  CAS  PubMed  Google Scholar 

  • Ohmiya N, Matsumoto S, Yamamoto H, Baranovskaya S, Malkhosyan S, Perucho M . (2001). Germline and somatic mutations in hMSH6 and hMSH3 in gastrointestinal cancers of the microsatellite mutator phenotype. Gene 272: 301–313.

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos N, Nicolaides N, Liu B, Parsons R, Lengauer C, Palombo F et al. (1995). Mutations of GTBP in genetically unstable cells. Science 268: 1915–1917.

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos N, Nicolaides N, Wei Y, Ruben S, Carter K, Rosen C et al. (1994). Mutation of a mutL homolog in hereditary colon cancer. Science 263: 1625–1629.

    Article  CAS  PubMed  Google Scholar 

  • Parsons R, Li G, Longley M, Fang W, Papadopoulos N, Jen J et al. (1993). Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75: 1227–1236.

    Article  CAS  PubMed  Google Scholar 

  • Pastrello C, Baglioni S, Tibiletti M, Papi L, Fornasarig M, Morabito A et al. (2006). Stability of BAT26 in tumours of hereditary nonpolyposis colorectal cancer patients with MSH2 intragenic deletion. Eur J Hum Genet 14: 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Peltomaki P, Aaltonen L, Sistonen P, Pylkkanen L, Mecklin J, Jarvinen H et al. (1993). Genetic mapping of a locus predisposing to human colorectal cancer. Science 260: 810–812.

    Article  CAS  PubMed  Google Scholar 

  • Perucho M, Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR et al. (1999). Correspondence re: C. R. Boland et al. A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res., 58: 5248–5257, 1998. Cancer Res 59: 249–256.

    CAS  PubMed  Google Scholar 

  • Pyatt R, Chadwick RB, Johnson CK, Adebamowo C, de la Chapelle A, Prior TW . (1999). Polymorphic variation at the BAT-25 and BAT-26 loci in individuals of African origin: implications for microsatellite instability testing. Am J Pathol 155: 349–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC et al. (1997). Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275: 967–969.

    Article  CAS  PubMed  Google Scholar 

  • Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM et al. (2003). Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349: 247–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Bigas M, Boland C, Hamilton S, Henson D, Jass J, Khan P et al. (1997). A national cancer institute workshop on hereditary nonpolyposis colorectal cancer syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst 89: 1758–1762.

    Article  CAS  PubMed  Google Scholar 

  • Roncalli M, Bianchi P, Grimaldi G, Ricci D, Laghi L, Maggioni M et al. (2000). Fractional allelic loss in non-end-stage cirrhosis: correlations with hepatocellular carcinoma development during follow-up. Hepatology 31: 846–850.

    Article  CAS  PubMed  Google Scholar 

  • Samowitz W, Albertsen H, Herrick J, Levin T, Sweeney C, Murtaugh M et al. (2005). Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology 129: 837–845.

    Article  CAS  PubMed  Google Scholar 

  • Samowitz WS, Curtin K, Ma K-N, Schaffer D, Coleman LW, Leppert M et al. (2001). Microsatellite instability in sporadic colon cancer is associated with an improved prognosis at the population level. Cancer Epidemiol Biomarkers Prev 10: 917–923.

    CAS  PubMed  Google Scholar 

  • Strachan TR . (1999). Human Molecular Genetics 2. John Wiley & Sons: New York.

    Google Scholar 

  • Suraweera N, Duval A, Reperant M, Vaury C, Furlan D, Leroy K et al. (2002). Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology 123: 1804–1811.

    Article  CAS  PubMed  Google Scholar 

  • Thibodeau S, Bren G, Schaid D . (1993). Microsatellite instability in cancer of the proximal colon. Science 260: 816–819.

    Article  CAS  PubMed  Google Scholar 

  • Thibodeau SN, French AJ, Cunningham JM, Tester D, Burgart LJ, Roche PC et al. (1998). Microsatellite instability in colorectal cancer: different mutator phenotypes and the principal involvement of hMLH1. Cancer Res 58: 1713–1718.

    CAS  PubMed  Google Scholar 

  • Thibodeau SN, French AJ, Roche PC, Cunningham JM, Tester DJ, Lindor NM et al. (1996). Altered expression of hMSH2 and hMLH1 in tumors with microsatellite instability and genetic alterations in mismatch repair genes. Cancer Res 56: 4836–4840.

    CAS  PubMed  Google Scholar 

  • Tomlinson I, Halford S, Aaltonen L, Hawkins N, Ward R . (2002). Does MSI-low exist? J Pathol 197: 6–13.

    Article  CAS  PubMed  Google Scholar 

  • Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa J-PJ . (1999). CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci 96: 8681–8686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truninger K, Menigatti M, Luz J, Russell A, Haider R, Gebbers J et al. (2005). Immunohistochemical analysis reveals high frequency of PMS2 defects in colorectal cancer. Gastroenterology 128: 1160–1171.

    Article  CAS  PubMed  Google Scholar 

  • Umar A, Boland CR, Terdiman JP, Syngal S, Chapelle Adl, Ruschoff J et al. (2004). Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96: 261–268.

    Article  CAS  PubMed  Google Scholar 

  • Vasen H, Mecklin J, Khan P, Lynch H . (1991). The international collaborative group on hereditary non-polyposis colorectal cancer (ICG-HNPCC). Dis Colon Rectum 34: 424–425.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Wu T-T, Catalano PJ, Ueki T, Satriano R, Haller DG et al. (2001). Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 344: 1196–1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg R . (2006). The Biology of Cancer. Garland Science: New York.

    Google Scholar 

  • Wu Y, Nystrom-Lahti M, Osinga J, Looman M, Peltomaki P, Aaltonen L et al. (1997). MSH2 and MLH1 mutations in sporadic replication error-positive colorectal carcinoma as assessed by two-dimensional DNA electrophoresis. Genes Chromosomes Cancer 18: 269–278.

    Article  CAS  PubMed  Google Scholar 

  • Xicola RM, Llor X, Pons E, Castells A, Alenda C, Pinol V et al. (2007). Performance of different microsatellite marker panels for detection of mismatch repair-deficient colorectal tumors. J Natl Cancer Inst 99: 244–252.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Sawai H, Perucho M . (1997). Frameshift somatic mutations in gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res 57: 4420–4426.

    CAS  PubMed  Google Scholar 

  • Yamashita K, Dai T, Dai Y, Yamamoto F, Perucho M . (2003). Genetics supersedes epigenetics in colon cancer phenotype. Cancer Cell 4: 121–131.

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Hoang J, Cottu P, Thomas G, Hamelin R . (1997). Allelic profiles of mononucleotide repeat microsatellites in control individuals and in colorectal tumors with and without replication errors. Oncogene 15: 1713–1718.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Laghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laghi, L., Bianchi, P. & Malesci, A. Differences and evolution of the methods for the assessment of microsatellite instability. Oncogene 27, 6313–6321 (2008). https://doi.org/10.1038/onc.2008.217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.217

Keywords

This article is cited by

Search

Quick links