Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lipocalin 2 is required for BCR-ABL-induced tumorigenesis

Abstract

Our previous studies indicate that reduction of lipocalin 2 (mouse 24p3) expression by either anti-sense or siRNA approaches strongly reduces the overgrowth of BCR-ABL+ mouse myeloid 32D in marrow and spleen of NOD/SCID mice. In this study, we used the mouse bone marrow transplant model to further explore the role of 24p3 in BCR-ABL-induced leukemia. Consistent with our previous findings, when using non-irradiated mice as recipient, donor marrow cells expressing BCR-ABL but lacking 24p3 did not cause leukemia or any disease after 75 days, whereas all mice receiving wild type BCR-ABL donor cells died with CML-like disease. An agar clone of the BCR-ABL+ human CML cell line K562 (C5) that secretes relatively high levels of lipocalin 2 (human NGAL) induced suppression of hematopoiesis in spleen and marrow of mice, leading to early death in contrast to parental K562 or K562 clone (C6) expressing low amounts of NGAL. Compared with K562 cells, overexpressing NGAL in K562 led to a higher apoptosis rate and an atrophy phenotype in the spleen of the inoculated mice. Plasma from both leukemic mice and CML patients showed elevated lipocalin 2 levels compared with healthy individuals. Moreover, we found that a primary stable cell line from wild-type mouse marrow cells expressing BCR-ABL caused solid tumors in nude mice whereas a similar BCR-ABL+ cell line from 24p3 null mice did not. These findings demonstrate that lipocalin 2 has at least two functions related to tumorigenesis, one involving apoptosis induction of normal hematopoietic cells and the other being tissue invasion by leukemia cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D . (1986). The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 233: 212–214.

    Article  CAS  Google Scholar 

  • Berger T, Togawa A, Duncan GS, Elia AJ, You-Ten A, Wakeham A et al. (2006). Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci USA 103: 1834–1839.

    Article  CAS  Google Scholar 

  • Daley GQ, Van Etten RA, Baltimore D . (1990). Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247: 824–830.

    Article  CAS  PubMed Central  Google Scholar 

  • Devireddy LR, Gazin C, Zhu X, Green MR . (2005). A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123: 1293–1305.

    Article  CAS  Google Scholar 

  • Devireddy LR, Teodoro JG, Richard FA, Green MR . (2001). Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation. Science 293: 829–834.

    Article  CAS  Google Scholar 

  • Egeblad M, Werb Z . (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 161–174.

    Article  CAS  Google Scholar 

  • Fernandez CA, Yan L, Louis G, Yang J, Kutok JL, Moses MA . (2005). The matrix metalloproteinase-9/neutrophil gelatinase-associated lipocalin complex plays a role in breast tumor growth and is present in the urine of breast cancer patients. Clin Cancer Res 11: 5390–5395.

    Article  CAS  Google Scholar 

  • Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK et al. (2004). Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432: 917–921.

    Article  CAS  Google Scholar 

  • Flower DR . (1996). The lipocalin protein family: structure and function. Biochem J 318 (Part 1): 1–14.

    Article  CAS  PubMed Central  Google Scholar 

  • Furutani M, Arii S, Mizumoto M, Kato M, Imamura M . (1998). Identification of a neutrophil gelatinase-associated lipocalin mRNA in human pancreatic cancers using a modified signal sequence trap method. Cancer Lett 122: 209–214.

    Article  CAS  Google Scholar 

  • Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK . (2002). The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10: 1033–1043.

    Article  CAS  Google Scholar 

  • Groffen J, Stephenson JR, Heisterkamp N, De Klein A, Bartram CR, Grosveld G . (1984). Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36: 93–99.

    Article  CAS  Google Scholar 

  • Guo JQ, Lin H, Kantarjian H, Talpaz M, Champlin R, Andreeff M et al. (2002). Comparison of competitive-nested PCR and real-time PCR in detecting BCR-ABL fusion transcripts in chronic myeloid leukemia patients. Leukemia 16: 2447–2453.

    Article  CAS  Google Scholar 

  • Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N . (1993). Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268: 10425–10432.

    CAS  PubMed  Google Scholar 

  • Li S, Ilaria Jr RL, Million RP, Daley GQ, Van Etten RA . (1999). The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 189: 1399–1412.

    Article  CAS  PubMed Central  Google Scholar 

  • Lim R, Ahmed N, Borregaard N, Riley C, Wafai R, Thompson EW et al. (2007). Neutrophil gelatinase-associated lipocalin (NGAL) an early-screening biomarker for ovarian cancer: NGAL is associated with epidermal growth factor-induced epithelio-mesenchymal transition. Int J Cancer 120: 2426–2434.

    Article  CAS  Google Scholar 

  • Lin F, Monaco G, Sun T, Liu J, Lin H, Stephens C et al. (2001). BCR gene expression blocks Bcr-Abl induced pathogenicity in a mouse model. Oncogene 20: 1873–1881.

    Article  CAS  Google Scholar 

  • Lin H, Monaco G, Sun T, Ling X, Stephens C, Xie S et al. (2005). Bcr-Abl-mediated suppression of normal hematopoiesis in leukemia. Oncogene 24: 3246–3256.

    CAS  PubMed  Google Scholar 

  • Miharada K, Hiroyama T, Sudo K, Danjo I, Nagasawa T, Nakamura Y . (2007). Lipocalin 2-mediated growth suppression is evident in human erythroid and monocyte/macrophage lineage cells. J Cell Physiol 215: 526–537.

    Article  Google Scholar 

  • Miharada K, Hiroyama T, Sudo K, Nagasawa T, Nakamura Y . (2005). Lipocalin 2 functions as a negative regulator of red blood cell production in an autocrine fashion. FASEB J 19: 1881–1883.

    Article  CAS  Google Scholar 

  • Nieborowska-Skorska M, Hoser G, Rink L, Malecki M, Kossev P, Wasik MA et al. (2006). Id1 transcription inhibitor-matrix metalloproteinase 9 axis enhances invasiveness of the breakpoint cluster region/abelson tyrosine kinase-transformed leukemia cells. Cancer Res 66: 4108–4116.

    Article  CAS  Google Scholar 

  • Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC et al. (1998). Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 92: 3780–3792.

    CAS  PubMed Central  Google Scholar 

  • Rudd PM, Mattu TS, Masure S, Bratt T, Van den Steen PE, Wormald MR et al. (1999). Glycosylation of natural human neutrophil gelatinase B and neutrophil gelatinase B-associated lipocalin. Biochemistry 38: 13937–13950.

    Article  CAS  Google Scholar 

  • Yan L, Borregaard N, Kjeldsen L, Moses MA . (2001). The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem 276: 37258–37265.

    Article  CAS  Google Scholar 

  • Yang J, Goetz D, Li JY, Wang W, Mori K, Setlik D et al. (2002). An iron delivery pathway mediated by a lipocalin. Mol Cell 10: 1045–1056.

    Article  CAS  Google Scholar 

  • Zhang H, Xu L, Xiao D, Xie J, Zeng H, Wang Z et al. (2007). Upregulation of neutrophil gelatinase-associated lipocalin in oesophageal squamous cell carcinoma: significant correlation with cell differentiation and tumour invasion. J Clin Pathol 60: 555–561.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We also want to thank Dr Bastinaella Perazzona for critically reading the paper. This research was supported in part by a grant from NIH (PO1 CA49639).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Arlinghaus.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leng, X., Lin, H., Ding, T. et al. Lipocalin 2 is required for BCR-ABL-induced tumorigenesis. Oncogene 27, 6110–6119 (2008). https://doi.org/10.1038/onc.2008.209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.209

Keywords

Search

Quick links