Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Constitutively active Rheb induces oncogenic transformation

Abstract

Rheb (Ras-homolog enriched in brain) is a component of the phosphatidylinositol 3-kinase (PI3K) target of rapamycin (TOR) signaling pathway, functioning as a positive regulator of TOR. Constitutively active mutants of Rheb induce oncogenic transformation in cell culture. The transformed cells are larger and contain more protein than their normal counterparts. They show constitutive phosphorylation of the ribosomal protein S6 kinase and the eukaryotic initiation factor 4E-binding protein 1, two downstream targets of TOR. The TOR-specific inhibitor rapamycin strongly interferes with transformation induced by constitutively active Rheb, suggesting that TOR activity is essential for the oncogenic effects of mutant Rheb. Rheb-induced transformation is also dependent on a C-terminal farnesylation signal that mediates localization to a cellular membrane. An engineered N-terminal myristylation signal can substitute for the farnesylation. Immunofluorescence localizes wild-type and mutant Rheb to vesicular structures in the cytoplasm, overlapping with the endoplasmic reticulum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

4E-BP1:

eukaryotic initiation factor 4E-binding protein 1

Akt:

v-akt murine thymoma viral oncogene homolog

CEF:

chicken embryonic fibroblast

eIF4E:

eukaryotic initiation factor 4E

ER:

endoplasmic reticulum

FOXO-1:

forkhead box protein class-O 1

GAP:

GTPase-activating protein

PI3K:

phosphatidylinositol 3-kinase

PIP3:

phosphatidylinositol 3,4,5-trisphosphate

Ras:

rat sarcoma

Rheb:

Ras-homolog enriched in brain

S6K:

ribosomal protein S6 kinase

TOR:

target of rapamycin

TSC:

tuberous sclerosis complex

YB-1:

Y box-binding protein 1

References

  • Ahmed NN, Grimes HL, Bellacosa A, Chan TO, Tsichlis PN . (1997). Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc Natl Acad Sci USA 94: 3627–3632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alessi DR, Cohen P . (1998). Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 8: 55–62.

    Article  CAS  PubMed  Google Scholar 

  • Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG et al. (1997a). 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 7: 776–789.

    Article  CAS  PubMed  Google Scholar 

  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB et al. (1997b). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7: 261–269.

    Article  CAS  PubMed  Google Scholar 

  • Aoki M, Batista O, Bellacosa A, Tsichlis P, Vogt PK . (1998). The akt kinase: molecular determinants of oncogenicity. Proc Natl Acad Sci USA 95: 14950–14955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki M, Jiang H, Vogt PK . (2004). Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc Natl Acad Sci USA 101: 13613–13617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki M, Vogt PK . (2004). Retroviral oncogenes and TOR. Curr Top Microbiol Immunol 279: 321–338.

    CAS  PubMed  Google Scholar 

  • Bader AG, Felts KA, Jiang N, Chang HW, Vogt PK . (2003). Y box-binding protein 1 induces resistance to oncogenic transformation by the phosphatidylinositol 3-kinase pathway. Proc Natl Acad Sci USA 100: 12384–12389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bader AG, Vogt PK . (2005). Inhibition of protein synthesis by Y box-binding protein 1 blocks oncogenic cell transformation. Mol Cell Biol 25: 2095–2106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bader AG, Vogt PK . (2008). Phosphorylation by Akt disables the anti-oncogenic activity of YB-1. Oncogene 27: 1179–1182.

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Ma D, Liu A, Shen X, Wang QJ, Liu Y et al. (2007). Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 318: 977–980.

    Article  CAS  PubMed  Google Scholar 

  • Basso AD, Mirza A, Liu G, Long BJ, Bishop WR, Kirschmeier P . (2005). The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and tamoxifen anti-tumor activity. J Biol Chem 280: 31101–31108.

    Article  CAS  PubMed  Google Scholar 

  • Biggs III WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC . (1999). Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA 96: 7421–7426.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bister K, Hayman MJ, Vogt PK . (1977). Defectiveness of avian myelocytomatosis virus MC29: isolation of long-term nonproducer cultures and analysis of virus-specific polypeptide synthesis. Virology 82: 431–448.

    Article  CAS  PubMed  Google Scholar 

  • Bos TJ, Monteclaro FS, Mitsunobu F, Ball Jr AR, Chang CH, Nishimura T et al. (1990). Efficient transformation of chicken embryo fibroblasts by c-Jun requires structural modification in coding and noncoding sequences. Genes Dev 4: 1677–1687.

    Article  CAS  PubMed  Google Scholar 

  • Briaud I, Dickson LM, Lingohr MK, McCuaig JF, Lawrence JC, Rhodes CJ . (2005). Insulin receptor substrate-2 proteasomal degradation mediated by a mammalian target of rapamycin (mTOR)-induced negative feedback down-regulates protein kinase B-mediated signaling pathway in beta-cells. J Biol Chem 280: 2282–2293.

    Article  CAS  PubMed  Google Scholar 

  • Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS et al. (1994). A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369: 756–758.

    Article  CAS  PubMed  Google Scholar 

  • Buerger C, DeVries B, Stambolic V . (2006). Localization of Rheb to the endomembrane is critical for its signaling function. Biochem Biophys Res Commun 344: 869–880.

    Article  CAS  PubMed  Google Scholar 

  • Cahill CM, Tzivion G, Nasrin N, Ogg S, Dore J, Ruvkun G et al. (2001). Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways. J Biol Chem 276: 13402–13410.

    Article  CAS  PubMed  Google Scholar 

  • Castro AF, Rebhun JF, Clark GJ, Quilliam LA . (2003). Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J Biol Chem 278: 32493–32496.

    Article  CAS  PubMed  Google Scholar 

  • Chan TO, Rittenhouse SE, Tsichlis PN . (1999). AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 68: 965–1014.

    Article  CAS  PubMed  Google Scholar 

  • Chang HW, Aoki M, Fruman D, Auger KR, Bellacosa A, Tsichlis PN et al. (1997). Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. Science 276: 1848–1850.

    Article  CAS  PubMed  Google Scholar 

  • Clark GJ, Kinch MS, Rogers-Graham K, Sebti SM, Hamilton AD, Der CJ . (1997). The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation. J Biol Chem 272: 10608–10615.

    Article  CAS  PubMed  Google Scholar 

  • Cohen SB, Waha A, Gelman IH, Vogt PK . (2001). Expression of a down-regulated target, SSeCKS, reverses v-Jun-induced transformation of 10T1/2 murine fibroblasts. Oncogene 20: 141–146.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham MA, Zhu Q, Hammond JM . (2004). FoxO1a can alter cell cycle progression by regulating the nuclear localization of p27kip in granulosa cells. Mol Endocrinol 18: 1756–1767.

    Article  CAS  PubMed  Google Scholar 

  • Dan HC, Sun M, Yang L, Feldman RI, Sui XM, Ou CC et al. (2002). Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J Biol Chem 277: 35364–35370.

    Article  CAS  PubMed  Google Scholar 

  • Datta SR, Brunet A, Greenberg ME . (1999). Cellular survival: a play in three Akts. Genes Dev 13: 2905–2927.

    Article  CAS  PubMed  Google Scholar 

  • Davletov B, Perisic O, Williams RL . (1998). Calcium-dependent membrane penetration is a hallmark of the C2 domain of cytosolic phospholipase A2 whereas the C2A domain of synaptotagmin binds membranes electrostatically. J Biol Chem 273: 19093–19096.

    Article  CAS  PubMed  Google Scholar 

  • Downward J . (1998). Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 10: 262–267.

    Article  CAS  PubMed  Google Scholar 

  • Drenan RM, Liu X, Bertram PG, Zheng XF . (2004). FKBP12-rapamycin-associated protein or mammalian target of rapamycin (FRAP/mTOR) localization in the endoplasmic reticulum and the Golgi apparatus. J Biol Chem 279: 772–778.

    Article  CAS  PubMed  Google Scholar 

  • Duff RG, Vogt PK . (1969). Characteristics of two new avian tumor virus subgroups. Virology 39: 18–30.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa-Hibi Y, Yoshida-Araki K, Ohta T, Ikeda K, Motoyama N . (2002). FOXO forkhead transcription factors induce G(2)-M checkpoint in response to oxidative stress. J Biol Chem 277: 26729–26732.

    Article  CAS  PubMed  Google Scholar 

  • Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H et al. (2003). Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11: 1457–1466.

    Article  CAS  PubMed  Google Scholar 

  • Gromov PS, Madsen P, Tomerup N, Celis JE . (1995). A novel approach for expression cloning of small GTPases: identification, tissue distribution and chromosome mapping of the human homolog of rheb. FEBS Lett 377: 221–226.

    Article  CAS  PubMed  Google Scholar 

  • Heo WD, Inoue T, Park WS, Kim ML, Park BO, Wandless TJ et al. (2006). PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314: 1458–1461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hers I, Tavare JM . (2005). Mechanism of feedback regulation of insulin receptor substrate-1 phosphorylation in primary adipocytes. Biochem J 388: 713–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Himly M, Foster DN, Bottoli I, Iacovoni JS, Vogt PK . (1998). The DF-1 chicken fibroblast cell line: transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology 248: 295–304.

    Article  CAS  PubMed  Google Scholar 

  • Hsu YC, Chern JJ, Cai Y, Liu M, Choi KW . (2007). Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445: 785–788.

    Article  CAS  PubMed  Google Scholar 

  • Hughes SH, Greenhouse JJ, Petropoulos CJ, Sutrave P . (1987). Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J Virol 61: 3004–3012.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Im E, von Lintig FC, Chen J, Zhuang S, Qui W, Chowdhury S et al. (2002). Rheb is in a high activation state and inhibits B-Raf kinase in mammalian cells. Oncogene 21: 6356–6365.

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Li Y, Xu T, Guan KL . (2003). Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17: 1829–1834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoki K, Li Y, Zhu T, Wu J, Guan KL . (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4: 648–657.

    Article  CAS  PubMed  Google Scholar 

  • Karbowniczek M, Cash T, Cheung M, Robertson GP, Astrinidis A, Henske EP . (2004). Regulation of B-Raf kinase activity by tuberin and Rheb is mammalian target of rapamycin (mTOR)-independent. J Biol Chem 279: 29930–29937.

    Article  CAS  PubMed  Google Scholar 

  • Karbowniczek M, Robertson GP, Henske EP . (2006). Rheb inhibits C-raf activity and B-raf/C-raf heterodimerization. J Biol Chem 281: 25447–25456.

    Article  CAS  PubMed  Google Scholar 

  • Kim JE, Chen J . (2000). Cytoplasmic-nuclear shuttling of FKBP12-rapamycin-associated protein is involved in rapamycin-sensitive signaling and translation initiation. Proc Natl Acad Sci USA 97: 14340–14345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawlor MA, Alessi DR . (2001). PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 114: 2903–2910.

    CAS  PubMed  Google Scholar 

  • Li Y, Inoki K, Guan KL . (2004). Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity. Mol Cell Biol 24: 7965–7975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J . (2005a). Rheb binds and regulates the mTOR kinase. Curr Biol 15: 702–713.

    Article  CAS  PubMed  Google Scholar 

  • Long X, Ortiz-Vega S, Lin Y, Avruch J . (2005b). Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J Biol Chem 280: 23433–23436.

    Article  CAS  PubMed  Google Scholar 

  • Mach KE, Furge KA, Albright CF . (2000). Loss of Rhb1, a Rheb-related GTPase in fission yeast, causes growth arrest with a terminal phenotype similar to that caused by nitrogen starvation. Genetics 155: 611–622.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC . (2002). Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10: 151–162.

    Article  CAS  PubMed  Google Scholar 

  • Medema RH, Kops GJ, Bos JL, Burgering BM . (2000). AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404: 782–787.

    Article  CAS  PubMed  Google Scholar 

  • Patel PH, Thapar N, Guo L, Martinez M, Maris J, Gau CL et al. (2003). Drosophila Rheb GTPase is required for cell cycle progression and cell growth. J Cell Sci 116: 3601–3610.

    Article  CAS  PubMed  Google Scholar 

  • Sabatini DM, Barrow RK, Blackshaw S, Burnett PE, Lai MM, Field ME et al. (1999). Interaction of RAFT1 with gephyrin required for rapamycin-sensitive signaling. Science 284: 1161–1164.

    Article  CAS  PubMed  Google Scholar 

  • Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH . (1994). RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78: 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G et al. (1995). Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem 270: 815–822.

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Araki Y, Kontani K, Nishina H, Katada T . (2005). Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin. J Biochem (Tokyo) 137: 423–430.

    Article  CAS  Google Scholar 

  • Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H et al. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14: 1296–1302.

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098–1101.

    Article  CAS  PubMed  Google Scholar 

  • Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA . (2003). Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 5: 566–571.

    Article  CAS  PubMed  Google Scholar 

  • Shah OJ, Hunter T . (2006). Turnover of the active fraction of IRS1 involves raptor-mTOR- and S6K1-dependent serine phosphorylation in cell culture models of tuberous sclerosis. Mol Cell Biol 26: 6425–6434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah OJ, Wang Z, Hunter T . (2004). Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14: 1650–1656.

    Article  CAS  PubMed  Google Scholar 

  • Sonderegger CK, Vogt PK . (2003). Binding of the corepressor TLE1 to Qin enhances Qin-mediated transformation of chicken embryo fibroblasts. Oncogene 22: 1749–1757.

    Article  CAS  PubMed  Google Scholar 

  • Stahl M, Dijkers PF, Kops GJ, Lens SM, Coffer PJ, Burgering BM et al. (2002). The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol 168: 5024–5031.

    Article  CAS  PubMed  Google Scholar 

  • Stephens L, Anderson K, Stokoe D, Erdjument-Bromage H, Painter GF, Holmes AB et al. (1998). Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 279: 710–714.

    Article  CAS  PubMed  Google Scholar 

  • Stocker H, Radimerski T, Schindelholz B, Wittwer F, Belawat P, Daram P et al. (2003). Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol 5: 559–565.

    Article  CAS  PubMed  Google Scholar 

  • Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF et al. (1997). Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277: 567–570.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Nakagawa M, Young SG, Yamanaka S . (2005). Differential membrane localization of ERas and Rheb, two Ras-related proteins involved in the phosphatidylinositol 3-kinase/mTOR pathway. J Biol Chem 280: 32768–32774.

    Article  CAS  PubMed  Google Scholar 

  • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J . (2003). Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13: 1259–1268.

    Article  CAS  PubMed  Google Scholar 

  • Urano J, Comiso MJ, Guo L, Aspuria PJ, Deniskin R, Tabancay Jr AP et al. (2005). Identification of novel single amino acid changes that result in hyperactivation of the unique GTPase, Rheb, in fission yeast. Mol Microbiol 58: 1074–1086.

    Article  CAS  PubMed  Google Scholar 

  • Urano J, Ellis C, Clark GJ, Tamanoi F . (2001). Characterization of Rheb functions using yeast and mammalian systems. Methods Enzymol 333: 217–231.

    Article  CAS  PubMed  Google Scholar 

  • Urano J, Tabancay AP, Yang W, Tamanoi F . (2000). The Saccharomyces cerevisiae Rheb G-protein is involved in regulating canavanine resistance and arginine uptake. J Biol Chem 275: 11198–11206.

    Article  CAS  PubMed  Google Scholar 

  • van Slegtenhorst M, Carr E, Stoyanova R, Kruger WD, Henske EP . (2004). Tsc1+ and tsc2+ regulate arginine uptake and metabolism in Schizosaccharomyces pombe. J Biol Chem 279: 12706–12713.

    Article  CAS  PubMed  Google Scholar 

  • Wan X, Harkavy B, Shen N, Grohar P, Helman LJ . (2007). Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 26: 1932–1940.

    Article  CAS  PubMed  Google Scholar 

  • Yamagata K, Sanders LK, Kaufmann WE, Yee W, Barnes CA, Nathans D et al. (1994). Rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem 269: 16333–16339.

    CAS  PubMed  Google Scholar 

  • Yan L, Findlay GM, Jones R, Procter J, Cao Y, Lamb RF . (2006). Hyperactivation of mammalian target of rapamycin (mTOR) signaling by a gain-of-function mutant of the Rheb GTPase. J Biol Chem 281: 19793–19797.

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Tabancay Jr AP, Urano J, Tamanoi F . (2001). Failure to farnesylate Rheb protein contributes to the enrichment of G0/G1 phase cells in the Schizosaccharomyces pombe farnesyltransferase mutant. Mol Microbiol 41: 1339–1347.

    Article  CAS  PubMed  Google Scholar 

  • Yee WM, Worley PF . (1997). Rheb interacts with Raf-1 kinase and may function to integrate growth factor- and protein kinase A-dependent signals. Mol Cell Biol 17: 921–933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Shu L, Hosoi H, Murti KG, Houghton PJ . (2002). Predominant nuclear localization of mammalian target of rapamycin in normal and malignant cells in culture. J Biol Chem 277: 28127–28134.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D . (2003). Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5: 578–581.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lynn Ueno, Dr Marco Gymnopoulos, Dr Peiging Sun and Dr William B Kiosses (Core Microscopy, The Scripps Research Institute) for expert technical assistance. This study was supported by grants from the National Cancer Institute. This article is numbered 19286 in the Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, H., Vogt, P. Constitutively active Rheb induces oncogenic transformation. Oncogene 27, 5729–5740 (2008). https://doi.org/10.1038/onc.2008.180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.180

Keywords

This article is cited by

Search

Quick links