Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

The glycogen synthase kinase (GSK) 3β represses RNA polymerase I transcription

Abstract

Several oncogenic proteins and tumour suppressors target the RNA polymerase I and interfere with rRNA synthesis. Here, we show that the glycogen synthase kinase (GSK) 3β, which phosphorylates the tumour suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10), is selectively enriched in nucleoli of RAS-transformed cells. Immunoprecipitation and chromatin immunoprecipitation assays performed on epithelial and endothelial cells transformed with oncogenic RAS show that GSK3β and PTEN are part of the same complex and associate with promoter and coding region of the rDNA. An active GSK3β mutant abolished nucleolar BrUTP incorporation and associated with the member of the selectivity factor 1 complex TAFI110. Finally, GSK3β inhibition upregulated 45S, 18S and 28S rRNA synthesis in RAS-transformed epithelial cells as revealed by semiquantitative real-time PCR and promoted cellular proliferation. Our results underscore a repressive function for GSK3β in rRNA biogenesis supporting its role as a tumour supressor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Al-Khouri AM, Ma Y, Togo SH, Williams S, Mustelin T . (2005). Cooperative phosphorylation of the tumour suppressor phopsphatase and tensin homologue (PTEN) by casein kinases and glycogen synthase kinase 3β. J Biol Chem 280: 35195–35196.

    Article  CAS  PubMed  Google Scholar 

  • Arbiser JL, Moses MA, Fernandez CA, Ghiso N, Cao Y, Klauber N et al. (1997). Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci USA 94: 861–866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachelder RE, Yoon SO, Franci C, de Herreros AG, Mercurio AM . (2005). Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. J Cell Biol 168: 29–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker SJ . (2007). PTEN enters the nuclear age. Cell 128: 25–28.

    Article  CAS  PubMed  Google Scholar 

  • Bijur GN, Jope RS . (2003). Glycogen synthase kinase 3β is highly activated in nuclei and mitochondria. Neurochemistry 14: 2415–2419.

    CAS  Google Scholar 

  • Chu EC, Tarnawski AS . (2004). PTEN regulatory functions in tumor suppression and cell biology. Med Sci Monit 10: RA235–RA241.

    CAS  PubMed  Google Scholar 

  • Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP . (1998). PTEN is essential for embryonic development and tumor suppression. Nat Gen 19: 348–355.

    Article  CAS  Google Scholar 

  • Dominguez I, Itoh K, Sokol SY . (1995). Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc Natl Acad Sci USA 92: 8498–8502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grummt I . (2003). Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev 17: 1691–1702.

    Article  CAS  PubMed  Google Scholar 

  • Janda E, Lehman K, Killish I, Jechlinger M, Herzig M, Downward J et al. (2002). Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156: 299–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jope RS, Johnson GVW . (2004). The glamour and gloom of glycogen synthase-3. Trends Biochem Sci 29: 95–102.

    Article  CAS  PubMed  Google Scholar 

  • Leslie NR, Downes CP . (2004). PTEN function: how normal cells control it and tumor cells lose it. Biochem J 382: 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma C, Wang J, Gao Y, Gao TW, Chen G, Bower KA et al. (2007). The role of glycogen synthase kinase 3beta in the transformation of epidermal cells. Cancer Res 67: 7756–7764.

    Article  CAS  PubMed  Google Scholar 

  • Mayer C, Grummt I . (2004). Cellular stress and nucleolar function. Cell Cycle 4: 1036–1038.

    Article  Google Scholar 

  • Meijer L, Skaltsounis AL, Magiatis P, Polychronopoulos P, Knockaert M, Leost M et al. (2006). GSK-3-selective inhibitors derived from tyrian purple indirubins. Chem Biol 10: 1255–1266.

    Article  Google Scholar 

  • Morisco C, Zebrowski D, Condorelli G, Tsichlis P, Vatner SF, Sadoshima J . (2000). The Akt-glycogen synthase kinase 3beta pathway regulates transcription of atrial natriuretic factor induced by beta-adrenergic receptor stimulation in cardiac myocytes. J Biol Chem 275: 14466–14475.

    Article  CAS  PubMed  Google Scholar 

  • Percipalle P, Fomproix N, Cavellan E, Voit R, Reimer G, Kruger T et al. (2006). The chromatin remodelling complex WSTF-SNF2h interacts with nuclear myosin 1 and has a role in RNA polymerase I transcription. EMBO rep 7: 525–530.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salas TR, Reddy SA, Clifford JL, Davis RJ, Kikuchi A, Lippman SM et al. (2003). Alleviating the suppression of glycogen synthase kinase 3β by Akt leads to the phosphorylation of cAMP-response element-binding protein and its transactivation in intact cell nuclei. J Biol Chem 278: 41338–41346.

    Article  CAS  PubMed  Google Scholar 

  • Savino TM, Bastos R, Jansen E, Hernandez-Verdun D . (1999). The nucleolar antigen Nop52, the human homologue of the yeast ribosomal RNA processing RRP1, is recruited at late stages of nucleologenesis. J Cell Sci 112: 1889–1900.

    CAS  PubMed  Google Scholar 

  • Seither P, Grummt I . (1996). Molecular cloning of RPA2, the gene encoding the second largest subunit of mouse RNA polymerase I. Genomics 3: 135–139.

    Article  Google Scholar 

  • Torres J, Pulido R . (2001). The tumour suppressor PTEN is phosphorylated by the protein kinase CKII at its C-terminus. Implications for PTEN stability to proteasome-mediated degradation. J Biol Chem 276: 993–998..

    Article  CAS  PubMed  Google Scholar 

  • Tseng A-S, Engel FB, Keating MT . (2006). The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chem Biol 13: 957–963.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zhou Y, Wang X, Evers BM . (2006). Glycogen synthase kinase 3 is a negative regulator of extracellular signal-regulated kinase. Oncogene 25: 43–50.

    Article  PubMed  PubMed Central  Google Scholar 

  • White RJ . (2005). RNA polymerases I and III growth control and cancer. Nat Rev Mol Cell Biol 6: 69–78.

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Comai L, Johnson DL . (2005). PTEN Represses RNA polymerase I transcription by disrupting the SL1 complex. Mol Cell Biol 25: 6899–6911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J Arbiser (Emory University, USA) and H Beug (Institute of Molecular Pathology, Vienna) for providing EpRAS and SVR cells. This work was supported by grants from the Swedish Research Council (Vetenskapsrådet), Cancerfonden, the Lars Hiertas Minne Foundation and the Jeansson Foundation to PP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Percipalle.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincent, T., Kukalev, A., Andäng, M. et al. The glycogen synthase kinase (GSK) 3β represses RNA polymerase I transcription. Oncogene 27, 5254–5259 (2008). https://doi.org/10.1038/onc.2008.152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.152

Keywords

This article is cited by

Search

Quick links