Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Serine 28 phosphorylation of NRIF3 confers its co-activator function for estrogen receptor-α transactivation

Abstract

NRIF3 is an estrogen-inducible nuclear receptor coregulator that stimulates estrogen receptor-α (ERα) transactivation functions and associates with the endogenous ER and its target gene promoter. p21-activated protein kinase 1 (Pak1) phosphorylates ERα at Ser305 and this modification is important in ERα transactivation function. Although ERα transactivation functions are regulated by co-activator activity of NRIF3, it remains unclear whether Pak1 could impact ER functions via a posttranslational modification of NRIF3. Here, we report that Pak1 phosphorylates NRIF3 at Serine28 and that NRIF3 binds to Pak1 in vitro and in vivo. We found that NRIF3 phosphorylation, co-activator activity and association with ERα increased following Pak1 phosphorylation of NRIF3's Ser28 and that activated ERα-Ser305 and NRIF3-Ser28 cooperatively support transactivation of ERα. NRIF3 expression increased significantly in cells with inducible Pak1 expression. We found that NRIF3 and ERα interaction, subcellular localization and ERα transactivation activity all increased in cells expressing the Pak1 phosphorylation-mimicking mutant NRIF3-Ser28Glu. Consistently, the NRIF3-Ser28Glu mutant exhibited an enhanced recruitment to the endogenous ER target genes and increased expression following estrogen stimulation. Finally, breast cancer cells with stable overexpression of NRIF3 showed increased proliferation and enhanced anchorage-independent growth. These findings suggest that NRIF3-Ser28 is a physiologic target of Pak1 signaling and contributes to the enhanced NRIF3 co-activator activity, leading to coordinated potentiation of ERα transactivation, its target gene expression and estrogen responsiveness of breast cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

E2:

17-β-estrodiol

ER:

estrogen receptor-α

ERE:

estrogen response element

luc:

luciferase

MTA1:

metastasis tumor antigen1

NR:

nuclear receptor

References

  • Ali S, Metzger D, Bornert JM, Chambon P . (1993). Phosphorylation of the human oestrogen receptor: identification of a phosphorylation site required for trans-activation. EMBO J 12: 1153–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold SF, Obourn JD, Jaffe H, Notides AC . (1994). Serine 167 is the major estradiol-induced phosphorylation site on the human estrogen receptor. Mol Endocrinol 8: 1208–1214.

    CAS  PubMed  Google Scholar 

  • Arnold SF, Obourn JD, Jaffe H, Notides AC . (1995a). Phosphorylation of the human estrogen receptor by mitogen-activated protein kinase and casein kinase II: consequence on DNA binding. J Steroid Biochem Mol Biol 55: 163–172.

    Article  CAS  PubMed  Google Scholar 

  • Arnold SF, Obourn JD, Jaffe H, Notides AC . (1995b). Phosphorylation of the human estrogen receptor on tyrosine 537 in vivo and by src family tyrosine kinases in vitro. Mol Endocrinol 9: 24–33.

    CAS  PubMed  Google Scholar 

  • Arnold SF, Obourn JD, Yudt MR, Carter TH, Notides AC . (1995c). In vivo and in vitro phosphorylation of the human estrogen receptor. J Steroid Biochem Mol Biol 52: 159–171.

    Article  CAS  PubMed  Google Scholar 

  • Aronica SM, Katzenellenbogen BS . (1993). Stimulation of estrogen receptor-mediated transcription and alteration in the phosphorylation state of the rat uterine estrogen receptor by estrogen, cyclin adenosine monophosphate and insulin-like growth factor-1. Mol Endocrinol 7: 743–752.

    CAS  PubMed  Google Scholar 

  • Balasenthil S, Sahin AA, Barnes CJ, Wang RA, Pestell RG, Vadlamudi RK et al. (2004). p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J Biol Chem 279: 1422–1428.

    Article  CAS  PubMed  Google Scholar 

  • Bunone G, Briand PA, Miksicek RJ, Picard D . (1996). Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 15: 2174–2183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castoria G, Migliaccio A, Green S, Di-Domenico M, Chambon P, Aurrichio F . (1993). Properties of a purified estradiol-dependent calf uterus tyrosine kinase. Biochemistry 32: 1740–1750.

    Article  CAS  PubMed  Google Scholar 

  • Font de Mora J, Brown M . (2000). AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol Cell Biol 20: 5041–5047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freedman LP . (1999). Increasing the complexity of coactivation in nuclear receptor signaling. Cell 97: 5–8.

    Article  CAS  PubMed  Google Scholar 

  • Glass CK, Rosenfeld MG . (2000). The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14: 121–141.

    CAS  PubMed  Google Scholar 

  • Hermanson O, Glass CK, Rosenfeld MG . (2002). Nuclear receptor coregulators: multiple modes of modification. Trends Endocrinol Metab 13: 55–60.

    Article  CAS  PubMed  Google Scholar 

  • Ignar-Trowbridge D, Teng CT, Ross KA, Parker MG, Korach KS, McLachlan JA . (1993). Peptide growth factors elicit estrogen receptor-dependent transcriptional activation of an estrogen-responsive element. Mol Endocrinol 7: 992–998.

    CAS  PubMed  Google Scholar 

  • Joel PB, Traish AM, Lannigan DA . (1995). Estradiol and phorbol ester cause phosphorylation of serine 118 in the human estrogen receptor. Mol Endocrinol 9: 1041–1052.

    CAS  PubMed  Google Scholar 

  • Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B et al. (1996). A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85: 403–414.

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Endoh E, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H et al. (1995). Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270: 1491–14941.

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Vadlamudi RK . (2002). Emerging functions of p21-activated kinases in human cancer cells. J Cell Physiol 193: 133–144.

    Article  CAS  PubMed  Google Scholar 

  • Lazaro JB, Bailey PJ, Lassar AB . (2002). Cyclin D-cdk4 activity modulates the subnuclear localization and interaction of MEF2 with SRC-family coactivators during skeletal muscle differentiation. Genes Dev 16: 1792–1805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Goff P, Montano MM, Schodin DJ, Katzenellenbogen BS . (1994). Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J Biol Chem 269: 4458–4466.

    CAS  PubMed  Google Scholar 

  • Li D, Desai-Yajnik V, Lo E, Schapira M, Abagyan R, Samuels HH . (1999). NRIF3 is a novel coactivator mediating functional specificity of nuclear hormone receptors. Mol Cell Biol 19: 7191–7202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Wang F, Samuels HH . (2001). Domain structure of the NRIF3 family of coregulators suggests potential dual roles in transcriptional regulation. Mol Cell Biol 21: 8371–8384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma ZQ, Santagati S, Patrone C, Pollio G, Vegeto E, Maggi A . (1994). Insulin-like growth factors activate estrogen receptor to control the growth and differentiation of the human neuroblastoma cell line SK-ER3. Mol Endocrinol 8: 910–918.

    CAS  PubMed  Google Scholar 

  • Metzger D, Berry M, Ali S, Chambon P . (1995). Effect of antagonists on DNA binding properties of the human oestrogen receptor in vitro and in vivo. Mol Endocrinol 9: 579–591.

    CAS  PubMed  Google Scholar 

  • Onate SA, Tsai SY, Tsai MJ, O'Malley BW . (1995). Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270: 1354–1357.

    Article  CAS  PubMed  Google Scholar 

  • Patrone C, Ma ZQ, Pollio G, Agrati P, Parker MG, Maggi A . (1996). Cross-coupling between insulin and estrogen receptor in human neuroblastoma cells. Mol Endocrinol 10: 499–507.

    CAS  PubMed  Google Scholar 

  • Pierce KL, Luttrell LM, Lefkowitz RJ . (2001). New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 20: 1532–1539.

    Article  CAS  PubMed  Google Scholar 

  • Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pelgram MD, Ramos L et al. (1995). HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 10: 2435–2446.

    CAS  PubMed  Google Scholar 

  • Rowan BG, Garrison N, Weigel NL, O'Malley BW . (2000). 8-Bromo-cyclic AMP induces phosphorylation of two sites in SRC-1 that facilitate ligand-independent activation of the chicken progesterone receptor and are critical for functional cooperation between SRC-1 and CREB binding protein. Mol Cell Biol 20: 8720–8730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiegelman BM, Heinrich R . (2004). Biological control through regulated transcriptional coactivators. Cell 119: 157–167.

    Article  CAS  PubMed  Google Scholar 

  • Talukder AH, Gururaj A, Mishra SK, Vadlamudi RK, Kumar R . (2004). Metastasis-associated protein 1 interacts with NRIF3, an estrogen-inducible nuclear receptor coregulator. Mol Cell Biol 24: 6581–6591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadlamudi RK, Adam L, Wang RA, Mandal M, Nguyen D, Sahin A et al. (2000). Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem 275: 36238–36244.

    Article  CAS  PubMed  Google Scholar 

  • Wang RA, Mazumdar A, Vadlamudi RK, Kumar R . (2002). P21-activated kinase-1 phosphorylates and transactivates estrogen receptor-alpha and promotes hyperplasia in mammary epithelium. EMBO J 21: 5437–5447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Rose DW, Hermanson O, Liu F, Herman T, Wu W et al. (2000). Regulation of somatic growth by the p160 coactivator p/CIP. Proc Natl Acad Sci USA 97: 13549–13554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu RC, Qin J, Hashimoto Y, Wong J, Xu J, Tsai SY et al. (2002). Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) coactivator activity by IκB kinase. Mol Cell Biol 22: 3549–3561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu RC, Qin J, Yi P, Wong J, Tsai SY, Tsai MJ et al. (2004). Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic responses to multiple cellular signaling pathways. Mol Cell 15: 937–949.

    Article  CAS  PubMed  Google Scholar 

  • Wu RC, Smith CL, O'Malley BW . (2005). Transcriptional regulation by steroid receptor coactivator phosphorylation. Endocr Rev 26: 393–399.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Christopher J Barnes and Suresh Rayala for the confocal microscopy and western blotting, respectively. This study was supported by the NIH grants CA90970 and CA098823 to RK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talukder, A., Li, DQ., Manavathi, B. et al. Serine 28 phosphorylation of NRIF3 confers its co-activator function for estrogen receptor-α transactivation. Oncogene 27, 5233–5242 (2008). https://doi.org/10.1038/onc.2008.151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.151

Keywords

This article is cited by

Search

Quick links