Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ectopic expression of methionine aminopeptidase-2 causes cell transformation and stimulates proliferation

Abstract

Methionine aminopeptidase-2 (MetAP2) processes N-terminal methionine from nascent cellular proteins. Inhibition of MetAP2 has been shown to block angiogenesis and suppress tumor growth in preclinical tumor models. However, the biological role of MetAP2 in cancer is not well understood. We examined the effect of three distinct chemical classes of MetAP2 inhibitors on the growth of a panel of human cancer cells in vitro. All MetAP2 inhibitors caused inhibition of tumor cell growth in both anchorage-dependent and, particularly, in anchorage-independent manner. These data prompted us to examine the possible roles of MetAP2 in cancers. Ectopic expression of MetAP2 in NIH-3T3 cells caused transformation, evidenced by the formation of foci in monolayer culture and growth of large colonies in soft agar. Overexpression of MetAP2 in an immortalized bronchial epithelial cell line NL20 accelerated growth. These phenotypes induced by the overexpression of MetAP2 were reversed by the treatment with MetAP2 inhibitors, indicating that the catalytic function of MetAP2 was essential. Accordingly, overexpression of a catalytically inactive MetAP2 resulted in growth retardation of HT1080 tumor cells, suggesting a dominant-negative role of the inactive MetAP2 mutant. Finally, we analysed the expression of MetAP2 in patient cancer samples by immunohistochemistry. Moderate-to-high staining was identified in the majority of breast, colon, lung, ovarian and prostate carcinomas examined. These data suggest that MetAP2 plays an important role in tumor cell growth and may contribute to tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Arner ES, Holmgren A . (2006). The thioredoxin system in cancer. Semin Cancer Biol 16: 420–426.

    Article  CAS  Google Scholar 

  • Bernier SG, Taghizadeh N, Thompson CD, Westlin WF, Hannig G . (2005). Methionine aminopeptidases type I and type II are essential to control cell proliferation. J Cell Biochem 95: 1191–1203.

    Article  CAS  Google Scholar 

  • Bradshaw RA, Brickey WW, Walker KW . (1998). N-terminal processing: the methionine aminopeptidase and n alpha-acetyl transferase families. Trends Biochem Sci 23: 263–267.

    Article  CAS  Google Scholar 

  • Bradshaw RA, Yi E . (2002). Methionine aminopeptidases and angiogenesis. Essays Biochem 38: 65–78.

    Article  CAS  Google Scholar 

  • Castronovo V, Belotti D . (1996). Tnp-470 (agm-1470): mechanisms of action and early clinical development. Eur J Cancer 32A: 2520–2527.

    Article  CAS  Google Scholar 

  • Catalano A, Romano M, Robuffo I, Strizzi L, Procopio A . (2001). Methionine aminopeptidase-2 regulates human mesothelioma cell survival: role of bcl-2 expression and telomerase activity. Am J Pathol 159: 721–731.

    Article  CAS  Google Scholar 

  • Datta B . (2000). MAPs and POEP of the roads from prokaryotic to eukaryotic kingdoms. Biochimie 82: 95–107.

    Article  CAS  Google Scholar 

  • Datta B, Datta R . (1999). Induction of apoptosis due to lowering the level of eukaryotic initiation factor 2-associated protein, p67, from mammalian cells by antisense approach. Exp Cell Res 246: 376–383.

    Article  CAS  Google Scholar 

  • Griffith EC, Su Z, Niwayama S, Ramsay CA, Chang YH, Liu JO . (1998). Molecular recognition of angiogenesis inhibitors fumagillin and ovalicin by methionine aminopeptidase 2. Proc Natl Acad Sci USA 95: 15183–15188.

    Article  CAS  Google Scholar 

  • Griffith EC, Su Z, Turk BE, Chen S, Chang YH, Wu Z et al. (1997). Methionine aminopeptidase (type 2) is the common target for angiogenesis inhibitors agm-1470 and ovalicin. Chem Biol 4: 461–471.

    Article  CAS  Google Scholar 

  • Hannig G, Lazarus DD, Bernier SG, Karp RM, Lorusso J, Qiu D et al. (2006). Inhibition of melanoma tumor growth by a pharmacological inhibitor of metap-2, ppi-2458. Int J Oncol 28: 955–963.

    CAS  PubMed  Google Scholar 

  • Hashimoto S, Onodera Y, Hashimoto A, Tanaka M, Hamaguchi M, Yamada A et al. (2004). Requirement for arf6 in breast cancer invasive activities. Proc Natl Acad Sci USA 101: 6647–6652.

    Article  CAS  Google Scholar 

  • Homsi J, Cubitt C, Daud A . (2007). The src signaling pathway: a potential target in melanoma and other malignancies. Expert Opin Ther Targets 11: 91–100.

    Article  CAS  Google Scholar 

  • Ingber D, Fujita T, Kishimoto S, Sudo K, Kanamaru T, Brem H et al. (1990). Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 348: 555–557.

    Article  CAS  Google Scholar 

  • Kanno T, Endo H, Takeuchi K, Morishita Y, Fukayama M, Mori S . (2002). High expression of methionine aminopeptidase type 2 in germinal center B cells and their neoplastic counterparts. Lab Invest 82: 893–901.

    Article  CAS  Google Scholar 

  • Kruger EA, Figg WD . (2000). Tnp-470: an angiogenesis inhibitor in clinical development for cancer. Expert Opin Investig Drugs 9: 1383–1396.

    Article  CAS  Google Scholar 

  • Kusaka M, Sudo K, Matsutani E, Kozai Y, Marui S, Fujita T et al. (1994). Cytostatic inhibition of endothelial cell growth by the angiogenesis inhibitor tnp-470 (agm-1470). Br J Cancer 69: 212–216.

    Article  CAS  Google Scholar 

  • Kwon YT, Kashina AS, Davydov IV, Hu RG, An JY, Seo JW et al. (2002). An essential role of N-terminal arginylation in cardiovascular development. Science 297: 96–99.

    Article  CAS  Google Scholar 

  • Leszczyniecka M, Bhatia U, Cueto M, Nirmala NR, Towbin H, Vattay A et al. (2006). MAP1D, a novel methionine aminopeptidase family member is overexpressed in colon cancer. Oncogene 25: 3471–3478.

    Article  CAS  Google Scholar 

  • Liu S, Widom J, Kemp CW, Crews CM, Clardy J . (1998). Structure of human methionine aminopeptidase-2 complexed with fumagillin. Science 282: 1324–1327.

    Article  CAS  Google Scholar 

  • Lowther WT, Matthews BW . (2000). Structure and function of the methionine aminopeptidases. Biochim Biophys Acta 1477: 157–167.

    Article  CAS  Google Scholar 

  • Menssen A, Hermeking H . (2002). Characterization of the c-myc-regulated transcriptome by sage: identification and analysis of c-myc target genes. Proc Natl Acad Sci USA 99: 6274–6279.

    Article  CAS  Google Scholar 

  • Mieulet V, Roceri M, Espeillac C, Sotiropoulos A, Ohanna M, Oorschot V et al. (2007). S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover. Am J Physiol Cell Physiol 293: C712–C722.

    Article  CAS  Google Scholar 

  • Resh MD . (2004). Membrane targeting of lipid modified signal transduction proteins. Subcell Biochem 37: 217–232.

    Article  CAS  Google Scholar 

  • Selvakumar P, Lakshmikuttyamma A, Kanthan R, Kanthan SC, Dimmock JR, Sharma RK . (2004). High expression of methionine aminopeptidase 2 in human colorectal adenocarcinomas. Clin Cancer Res 10: 2771–2775.

    Article  CAS  Google Scholar 

  • Sheppard GS, Wang J, Kawai M, Fidanze SD, Bamaung NY, Erickson SA et al. (2006). Discovery and optimization of anthranilic acid sulfonamides as inhibitors of methionine aminopeptidase-2: a structural basis for the reduction of albumin binding. J Med Chem 49: 3832–3849.

    Article  CAS  Google Scholar 

  • Sin N, Meng L, Wang MQ, Wen JJ, Bornmann WG, Crews CM . (1997). The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, metap-2. Proc Natl Acad Sci USA 94: 6099–6103.

    Article  CAS  Google Scholar 

  • Varshavsky A . (2005). Regulated protein degradation. Trends Biochem Sci 30: 283–286.

    Article  CAS  Google Scholar 

  • Vetro JA, Dummitt B, Micka WS, Chang YH . (2005). Evidence of a dominant negative mutant of yeast methionine aminopeptidase type 2 in saccharomyces cerevisiae. J Cell Biochem 94: 656–668.

    Article  CAS  Google Scholar 

  • Wang J, Lou P, Henkin J . (2000). Selective inhibition of endothelial cell proliferation by fumagillin is not due to differential expression of methionine aminopeptidases. J Cell Biochem 77: 465–473.

    Article  CAS  Google Scholar 

  • Wang J, Sheppard GS, Lou P, Kawai M, BaMaung N, Erickson SA et al. (2003a). Tumor suppression by a rationally designed reversible inhibitor of methionine aminopeptidase-2. Cancer Res 63: 7861–7869.

    CAS  PubMed  Google Scholar 

  • Wang J, Sheppard GS, Lou P, Kawai M, Park C, Egan DA et al. (2003b). Physiologically relevant metal cofactor for methionine aminopeptidase-2 is manganese. Biochemistry 42: 5035–5042.

    Article  CAS  Google Scholar 

  • Wu S, Gupta S, Chatterjee N, Hileman RE, Kinzy TG, Denslow ND et al. (1993). Cloning and characterization of complementary DNA encoding the eukaryotic initiation factor 2-associated 67-kDa protein (p67). J Biol Chem 268: 10796–10801.

    CAS  PubMed  Google Scholar 

  • Yang G, Kirkpatrick RB, Ho T, Zhang GF, Liang PH, Johanson KO et al. (2001). Steady-state kinetic characterization of substrates and metal-ion specificities of the full-length and N-terminally truncated recombinant human methionine aminopeptidases (type 2). Biochemistry 40: 10645–10654.

    Article  CAS  Google Scholar 

  • Yeh JR, Ju R, Brdlik CM, Zhang W, Zhang Y, Matyskiela ME et al. (2006). Targeted gene disruption of methionine aminopeptidase 2 results in an embryonic gastrulation defect and endothelial cell growth arrest. Proc Natl Acad Sci USA 103: 10379–10384.

    Article  CAS  Google Scholar 

  • Yeh JR, Mohan R, Crews CM . (2000). The antiangiogenic agent TNP-470 requires p53 and p21CIP/WAF for endothelial cell growth arrest. Proc Natl Acad Sci USA 97: 12782–12787.

    Article  CAS  Google Scholar 

  • Zhang Y, Griffith EC, Sage J, Jacks T, Liu JO . (2000). Cell cycle inhibition by the anti-angiogenic agent TNP-470 is mediated by p53 and p21WAF1/CIP1. Proc Natl Acad Sci USA 97: 6427–6432.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Milagros Colon-Lopez and Guido Sauter for tissue microarray studies on MetAP2 expression, and Dr Jack Henkin for critical reading of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tucker, L., Zhang, Q., Sheppard, G. et al. Ectopic expression of methionine aminopeptidase-2 causes cell transformation and stimulates proliferation. Oncogene 27, 3967–3976 (2008). https://doi.org/10.1038/onc.2008.14

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.14

Keywords

This article is cited by

Search

Quick links