Abstract
It has been recently shown that cannabinoids, the active components of marijuana and their derivatives, inhibit cell cycle progression of human breast cancer cells. Here we studied the mechanism of Δ9-tetrahydrocannabinol (THC) antiproliferative action in these cells, and show that it involves the modulation of JunD, a member of the AP-1 transcription factor family. THC activates JunD both by upregulating gene expression and by translocating the protein to the nuclear compartment, and these events are accompanied by a decrease in cell proliferation. Of interest, neither JunD activation nor proliferation inhibition was observed in human non-tumour mammary epithelial cells exposed to THC. We confirmed the importance of JunD in THC action by RNA interference and genetic ablation. Thus, in both JunD-silenced human breast cancer cells and JunD knockout mice-derived immortalized fibroblasts, the antiproliferative effect exerted by THC was significantly diminished. Gene array and siRNA experiments support that the cyclin-dependent kinase inhibitor p27 and the tumour suppressor gene testin are candidate JunD targets in cannabinoid action. In addition, our data suggest that the stress-regulated protein p8 participates in THC antiproliferative action in a JunD-independent manner. In summary, this is the first report showing not only that cannabinoids regulate JunD but, more generally, that JunD activation reduces the proliferation of cancer cells, which points to a new target to inhibit breast cancer progression.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
MEN1 silencing aggravates tumorigenic potential of AR-independent prostate cancer cells through nuclear translocation and activation of JunD and β-catenin
Journal of Experimental & Clinical Cancer Research Open Access 26 August 2021
-
Cannabinoids in the landscape of cancer
Journal of Cancer Research and Clinical Oncology Open Access 14 July 2021
-
PretiMeth: precise prediction models for DNA methylation based on single methylation mark
BMC Genomics Open Access 15 May 2020
Access options
Subscribe to this journal
Receive 50 print issues and online access
$259.00 per year
only $5.18 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout







References
Bakiri L, Matsuo K, Wisniewska M, Wagner EF, Yaniv M . (2002). Promoter specificity and biological activity of tethered AP-1 dimers. Mol Cell Biol 22: 4952–4964.
Berdyshev EV, Schmid PC, Krebsbach RJ, Hillard CJ, Huang C, Chen N et al. (2001). Cannabinoid-receptor-independent cell signalling by N-acylethanolamines. Biochem J 360: 67–75.
Blazquez C, Carracedo A, Barrado L, Real PJ, Fernandez-Luna JL, Velasco G et al. (2006). Cannabinoid receptors as novel targets for the treatment of melanoma. FASEB J 20: 2633–2635.
Caffarel MM, Sarrio D, Palacios J, Guzman M, Sanchez C . (2006). Delta9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Res 66: 6615–6621.
Carracedo A, Gironella M, Lorente M, Garcia S, Guzman M, Velasco G et al. (2006a). Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Res 66: 6748–6755.
Carracedo A, Lorente M, Egia A, Blazquez C, Garcia S, Giroux V et al. (2006b). The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell 9: 301–312.
De Petrocellis L, Melck D, Palmisano A, Bisogno T, Laezza C, Bifulco M et al. (1998). The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation. Proc Natl Acad Sci USA 95: 8375–8380.
Drusco A, Zanesi N, Roldo C, Trapasso F, Farber JL, Fong LY et al. (2005). Knockout mice reveal a tumor suppressor function for Testin. Proc Natl Acad Sci USA 102: 10947–10951.
Eferl R, Wagner EF . (2003). AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3: 859–868.
Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D et al. (2004). JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118: 781–794.
Giuliano M, Calvaruso G, Pellerito O, Portanova P, Carlisi D, Vento R et al. (2006). Anandamide-induced apoptosis in Chang liver cells involves ceramide and JNK/AP-1 pathway. Int J Mol Med 17: 811–819.
Guzman M . (2003). Cannabinoids: potential anticancer agents. Nat Rev Cancer 3: 745–755.
Guzman M, Duarte MJ, Blazquez C, Ravina J, Rosa MC, Galve-Roperh I et al. (2006). A pilot clinical study of Delta9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. Br J Cancer 95: 197–203.
Hampson AJ, Grimaldi M, Axelrod J, Wink D . (1998). Cannabidiol and (−)Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci USA 95: 8268–8273.
Hampson AJ, Grimaldi M, Lolic M, Wink D, Rosenthal R, Axelrod J . (2000). Neuroprotective antioxidants from marijuana. Ann NY Acad Sci 899: 274–282.
Iuvone T, Esposito G, Esposito R, Santamaria R, Di Rosa M, Izzo AA . (2004). Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. J Neurochem 89: 134–141.
Lallemand D, Spyrou G, Yaniv M, Pfarr CM . (1997). Variations in Jun and Fos protein expression and AP-1 activity in cycling, resting and stimulated fibroblasts. Oncogene 14: 819–830.
Ligresti A, Moriello AS, Starowicz K, Matias I, Pisanti S, De Petrocellis L et al. (2006). Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. J Pharmacol Exp Ther 318: 1375–1387.
Maccarrone M, Di Rienzo M, Battista N, Gasperi V, Guerrieri P, Rossi A et al. (2003). The endocannabinoid system in human keratinocytes. Evidence that anandamide inhibits epidermal differentiation through CB1 receptor-dependent inhibition of protein kinase C, activation protein-1, and transglutaminase. J Biol Chem 278: 33896–33903.
Malumbres M, Barbacid M . (2001). To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1: 222–231.
Mechta F, Lallemand D, Pfarr CM, Yaniv M . (1997). Transformation by ras modifies AP1 composition and activity. Oncogene 14: 837–847.
Mechta-Grigoriou F, Gerald D, Yaniv M . (2001). The mammalian Jun proteins: redundancy and specificity. Oncogene 20: 2378–2389.
Pfarr CM, Mechta F, Spyrou G, Lallemand D, Carillo S, Yaniv M . (1994). Mouse JunD negatively regulates fibroblast growth and antagonizes transformation by ras. Cell 76: 747–760.
Salazar M, Rojo AI, Velasco D, de Sagarra RM, Cuadrado A . (2006). Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem 281: 14841–14851.
Sarnataro D, Pisanti S, Santoro A, Gazzerro P, Malfitano AM, Laezza C et al. (2006). The cannabinoid CB1 receptor antagonist rimonabant (SR141716) inhibits human breast cancer cell proliferation through a lipid raft-mediated mechanism. Mol Pharmacol 70: 1298–1306.
Stickeler E, Kittrell F, Medina D, Berget SM . (1999). Stage-specific changes in SR splicing factors and alternative splicing in mammary tumorigenesis. Oncogene 18: 3574–3582.
van Dam H, Duyndam M, Rottier R, Bosch A, de Vries-Smits L, Herrlich P et al. (1993). Heterodimer formation of cJun and ATF-2 is responsible for induction of c-jun by the 243 amino acid adenovirus E1A protein. EMBO J 12: 479–487.
Weitzman JB, Fiette L, Matsuo K, Yaniv M . (2000). JunD protects cells from p53-dependent senescence and apoptosis. Mol Cell 6: 1109–1119.
Zhao Q, He Z, Chen N, Cho YY, Zhu F, Lu C et al. (2005). 2-Arachidonoylglycerol stimulates activator protein-1-dependent transcriptional activity and enhances epidermal growth factor-induced cell transformation in JB6 P+ cells. J Biol Chem 280: 26735–26742.
Acknowledgements
We are indebted to the personnel of the Genomics Unit (Complutense University) for expert advice on RT-qPCR experiments, and to the members of our laboratories for technical support and critical discussions on this work, especially to M Salazar. C Sanchez and G Moreno-Bueno are researchers of the ‘Ramon y Cajal Program’ of the Spanish Ministry of Education and Science. MM Caffarel is the recipient of a fellowship from the Spanish Ministry of Education and Science. This work was supported by grants from Fondo de Investigaciones Sanitarias (C Sanchez and J Palacios), Fundacion Mutua Madrileña (C Sanchez), Spanish Ministry of Education and Science (J Palacios and M Guzman), ISCIII-RETIC (J Palacios), Comunidad de Madrid (M Guzman) and Inserm Avenir, Institut Curie and Fondation de France (F Mechta-Grigoriou).
Author information
Authors and Affiliations
Corresponding author
Additional information
Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).
Supplementary information
Rights and permissions
About this article
Cite this article
Caffarel, M., Moreno-Bueno, G., Cerutti, C. et al. JunD is involved in the antiproliferative effect of Δ9-tetrahydrocannabinol on human breast cancer cells. Oncogene 27, 5033–5044 (2008). https://doi.org/10.1038/onc.2008.145
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/onc.2008.145
Keywords
This article is cited by
-
Tetrahydrocannabinols: potential cannabimimetic agents for cancer therapy
Cancer and Metastasis Reviews (2023)
-
MEN1 silencing aggravates tumorigenic potential of AR-independent prostate cancer cells through nuclear translocation and activation of JunD and β-catenin
Journal of Experimental & Clinical Cancer Research (2021)
-
Cannabinoids in the landscape of cancer
Journal of Cancer Research and Clinical Oncology (2021)
-
PretiMeth: precise prediction models for DNA methylation based on single methylation mark
BMC Genomics (2020)
-
Towards the use of cannabinoids as antitumour agents
Nature Reviews Cancer (2012)