Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Activation of BAG3 by Egr-1 in response to FGF-2 in neuroblastoma cells

Abstract

The co-chaperone protein, BAG3, which belongs to the BAG protein family, has an established antiapoptotic function in different tumor cell lines. Here we demonstrated that treatment of the human neuroblastoma cell line, SK-N-MC, with fibroblast growth factor-2 (FGF-2) results in induction of BAG3 expression. Induction of BAG3 protein by FGF-2 occurs at the transcriptional level; it requires the extracellular regulated kinase1/2 pathway and is dependent on the activity of Egr-1 upon the BAG3 promoter. Targeted suppression of BAG3 by small-interfering RNA results in dysregulation of cell-cycle progression most notably at S and G2 phases, which corroborates the decreased level of cyclin B1 expression. These observations suggest a new role for BAG3 in regulation of the cell cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Alzheimer C, Werner S . (2002). Fibroblast growth factors and neuroprotection. Adv Exp Med Biol 513: 335–351.

    Article  CAS  Google Scholar 

  • Andrews NC, Faller DV . (1991). A rapid micropreparation technique for extraction of DNA binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res 19: 2499.

    Article  CAS  Google Scholar 

  • Baird A . (1994). Fibroblast growth factors: activities and significance of non-neurotrophic growth factors. Curr Opin Neurobiol 4: 78–86.

    Article  CAS  Google Scholar 

  • Basilico C, Moscatelli D . (1992). The FGF family of growth factors and oncogenes. Adv Cancer Res 59: 115–165.

    Article  CAS  Google Scholar 

  • Bikfalvi A, Klein S, Pintucci G, Rifkin DB . (1997). Biological roles of fibroblast growth factor-2. Endocr Rev 18: 26–45.

    CAS  Google Scholar 

  • Carreras I, Rich CB, Jaworski JA, Dicamillo SJ, Panchenko MP, Goldstein R et al. (2001). Functional components of basic fibroblast growth factor signaling that inhibit lung elastin gene expression. Am J Physiol Lung Cell Mol Physiol 281: L766–L775.

    Article  CAS  Google Scholar 

  • Chiappetta G, Ammirante M, Basile A, Rosati A, Festa M, Monaco M et al. (2007). The antiapoptotic protein BAG3 is expressed in thyroid carcinomas and modulates apoptosis mediated by tumor necrosis factor-related apoptosis-inducing ligand. J Clin Endocrinol Metab 92: 1159–1163.

    Article  CAS  Google Scholar 

  • Doong H, Price J, Kim YS, Gasbarre C, Probst J, Liotta LA et al. (2000). CAIR-1/BAG-3 forms an EGF-regulated ternary complex with phospholipase C-γ and Hsp70/Hsc70. Oncogene 19: 4385–4395.

    Article  CAS  Google Scholar 

  • Doong H, Rizzo K, Fang S, Kulpa V, Weissman AM, Kohn EC . (2003). CAIR-1/BAG3 abrogates heat shock protein-70 chaperone complex-mediated protein degradation: accumulation of poly-ubiquinated Hsp90 client proteins. J Biol Chem 278: 28490–28500.

    Article  CAS  Google Scholar 

  • Doong H, Vrailas A, Kohn EC . (2002). What's in the ‘BAG’? A functional domain analysis of the BAG-family proteins. Cancer Lett 188: 25–32.

    Article  CAS  Google Scholar 

  • Gotz R, Wiese S, Takayama S, Camarero GC, Rossoll W, Schweizer U et al. (2005). Bag1 is essential for differentiation and survival of hematopoietic and neuronal cells. Nat Neurosci 8: 1169–1178.

    Article  Google Scholar 

  • Gremo F, Presta M . (2000). Role of fibroblast growth factor-2 in human brain: a focus on development. Int J Dev Neurosci 18: 271–279.

    Article  CAS  Google Scholar 

  • Gritti A, Parati EA, Cova L, Frolichsthal P, Galli R, Wanke E et al. (1996). Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 16: 1091–1100.

    Article  CAS  Google Scholar 

  • Her S, Arimochi H, Morita K . (2004). Nerve growth factor induces elevation of steroid 5 alpha-reductase mRNA levels in rat C6 glioma cells through expression of transcription factor Egr-1. Brain Res Mol Brain Res 126: 157–164.

    Article  CAS  Google Scholar 

  • Homma S, Iwasaki M, Shelton GD, Engvall E, Reed JC, Takayama S . (2006). AG3 deficiency results in fulminant myopathy and early lethality. Am J Pathol 169: 761–773.

    Article  CAS  Google Scholar 

  • Issa R, AlQteishat A, Mitsios N, Saka M, Krupinski J, Tarkowski E et al. (2005). Expression of basic fibroblast growth factor mRNA and protein in the human brain following ischaemic stroke. Angiogenesis 8: 53–62.

    Article  CAS  Google Scholar 

  • Kim MS, Kim CJ, Jung HS, Seo MR, Juhnn YS, Shin HY et al. (2004). Fibroblast growth factor 2 induces differentiation and apoptosis of Askin tumour cells. J Pathol 202: 103–112.

    Article  CAS  Google Scholar 

  • Kontaridis MI, Liu X, Zhang L, Bennett AM . (2002). Role of SHP-2 in fibroblast growth factor receptor-mediated suppression of myogenesis in C2C12 myoblasts. Mol Cell Biol 22: 3875–3891.

    Article  CAS  Google Scholar 

  • Lee JH, Takahashi T, Yasuhara N, Inazawa J, Kamada S, Tsujimoto Y et al. (1999). A Bcl-2-binding protein that synergizes with Bcl-2 in preventing cell death. Oncogene 18: 6183–6190.

    Article  CAS  Google Scholar 

  • Lee MY, Kim SY, Choi JS, Choi YS, Jeon MH, Lee JH et al. (2002b). Induction of Bis, a Bcl-2-binding protein, in reactive astrocytes of the rat hippocampus following kainic acid-induced seizure. Exp Mol Med 34: 167–171.

    Article  CAS  Google Scholar 

  • Lee MY, Kim SY, Shin SL, Choi YS, Lee JH, Tsujimoto Y et al. (2002a). Reactive astrocytes express bis, a bcl-2-binding protein, after transient forebrain ischemia. Exp Neurol 175: 338–346.

    Article  CAS  Google Scholar 

  • Liaoa Q, Ozawaa F, Friessa H, Zimmermann A, Takayama S, Reed JC et al. (2001). The anti-apoptotic protein BAG-3 is overexpressed in pancreatic cancer and induced by heat stress in pancreatic cancer cell lines. FEBS Letters 503: 151–157.

    Article  Google Scholar 

  • Liman J, Ganesan S, Dohm CP, Krajewski S, Reed JC, Bahr M et al. (2005). Interaction of BAG1 and Hsp70 mediates neuroprotectivity and increases chaperone activity. Mol Cell Biol 25: 3715–3725.

    Article  CAS  Google Scholar 

  • Lowe B, Avila HA, Bloom FR, Gleeson M, Kusser W . (2003). Quantitation of gene expression in neuronal precursors by reverse-transcription polymerase chain reaction using self-quenched, fluorogenic primers. Anal Biochem 315: 95–105.

    Article  CAS  Google Scholar 

  • Midgley VC, Khachigian LM . (2004). Fibroblast growth factor-2 induction of platelet-derived growth factor-C chain transcription in vascular smooth muscle cells is ERK-dependent but not JNK-dependent and mediated by Egr-1. J Biol Chem 279: 40289–40295.

    Article  CAS  Google Scholar 

  • O'Donovan KJ, Tourtellotte WG, Millbrandt J, Baraban JM . (1999). The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci 22: 167–173.

    Article  CAS  Google Scholar 

  • Pagliuca MG, Lerose R, Cigliano S, Leone A . (2003). Regulation by heavy metals and temperature of the human BAG-3 gene, a modulator of Hsp70 activity. FEBS Lett 541: 11–15.

    Article  CAS  Google Scholar 

  • Romano MF, Festa M, Pagliuca G, Lerose R, Bisogni R, Chiurazzi F et al. (2003a). BAG3 protein controls B-chronic lymphocytic leukaemia cell apoptosis. Cell Death Diff 10: 383–385.

    Article  CAS  Google Scholar 

  • Romano MF, Festa M, Petrella A, Rosati A, Pascale M, Bisogni R et al. (2003b). A. BAG3 protein regulates cell survival in childhood acute lymphoblastic leukemia cells. Cancer Biol Ther 2: 508–510.

    Article  CAS  Google Scholar 

  • Rosati A, Ammirante M, Gentilella A, Basile A, Festa M, Pascale M et al. (2007a). Apoptosis inhibition in cancer cells: a novel molecular pathway that involves BAG3 protein. Int J Biochem Cell Biol 39: 1337–1342.

    Article  CAS  Google Scholar 

  • Rosati A, Leone A, Del Valle L, Amini S, Khalili K, Turco MC . (2007b). Evidence for BAG3 modulation of HIV-1 gene transcription. J Cell Physiol 210: 676–683.

    Article  CAS  Google Scholar 

  • Rössler OG, Thiel G . (2004). Brain-derived neurotrophic factor-, epidermal growth factor-, or A-Raf-induced growth of HaCaT keratinocytes requires extracellular signal-regulated kinase. Am J Physiol Cell Physiol 286: C1118–C1129.

    Article  Google Scholar 

  • Russo VC, Andaloro E, Fornaro SA, Najdovska S, Newgreen DF, Bach LA et al. (2004). Fibroblast growth factor-2 over-rides insulin-like growth factor-1 induced proliferation and cell survival in human neuroblastoma cells. J Cell Physiol 199: 371–380.

    Article  CAS  Google Scholar 

  • Schwartz SM, Liaw L . (1993). Growth control and morphogenesis in the development and pathology of arteries. J Cardiovasc Pharmacol 21 (Suppl): S31–S49.

    Article  CAS  Google Scholar 

  • Smits VA, van Peer MA, Essers MA, Klopmaker R, Rijksen G, Medema RH . (2000). Negative growth regulation of SK-N-MC cells by bFGF defines a growth factor-sensitive point in G2. J Biol Chem 275: 19375–19381.

    Article  CAS  Google Scholar 

  • Song J, Takeda M, Morimoto R . (2001). BAG1-Hsp70 mediates a physiological stress signaling pathway that regulates Raf-1/ERK and cell growth morphogenesis. Nat Cell Biol 3: 276–282.

    Article  CAS  Google Scholar 

  • Takayama S, Xie Z, Reed JC . (1999). An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J Biol Chem 274: 781–786.

    Article  CAS  Google Scholar 

  • Temple S, Qian X . (1995). bFGF, neurotrophins, and the control of cortical neurogenesis. Neuron 15: 249–252.

    Article  CAS  Google Scholar 

  • Thiel G, Cibelli G . (2002). Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol 193: 287–292.

    Article  CAS  Google Scholar 

  • Vogel S, Kubin T, von der Ahe D, Deindl E, Schaper W, Zimmermann R . (2006). MEK hyperphosphorylation coincides with cell cycle shut down of cultured smooth muscle cells. J Cell Physiol 206: 25–34.

    Article  CAS  Google Scholar 

  • Zapata JM, Takahashi R, Salvesen GS, Reed JC . (1998). Granzyme release and caspase activation in activated human T-lymphocytes. J Biol Chem 273: 6916–6920.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank past and present members of the Department of Neuroscience and Center for Neurovirology for sharing of ideas and reagents, and their encouragement throughout this study. We also thank Dr Francesca Peruzzi, Dr Davide Eletto and Dr Thersa M Sweet for their advices, William Yen and Jessica Otte for their technical support, Dr Martyn White for his time and assistance in the preparation of the manuscript and C Schriver for editorial assistance. This study is dedicated to our friend and colleague, Dr Arturo Leone. This work was made possible by grants awarded by NIH to KK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Khalili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gentilella, A., Passiatore, G., Deshmane, S. et al. Activation of BAG3 by Egr-1 in response to FGF-2 in neuroblastoma cells. Oncogene 27, 5011–5018 (2008). https://doi.org/10.1038/onc.2008.142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.142

Keywords

This article is cited by

Search

Quick links