Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cyclin D1 mediates resistance to apoptosis through upregulation of molecular chaperones and consequent redistribution of cell death regulators

Abstract

Cyclin D1 is a key regulator of cell proliferation. It also controls other aspects of the cell fate, such as cellular senescence, apoptosis and tumourigenesis. We used B-lymphoid cell lines producing cyclin D1 to investigate the role of this protein in B-cell lymphomas and leukaemias. Constitutive low levels of cyclin D1 had no effect per se on cell proliferation, but conferred resistance to various apoptotic stimuli in B cells. Activation of the pro-apoptotic protein, Bax, was reduced and mitochondrial permeabilization and phosphatidylserine exposure following cytokine withdrawal were delayed in cyclin D1-producing cells. Proteomic analysis showed that the presence of cyclin D1 led to intracellular accumulation of various molecular chaperones. The chaperone, heat shock protein (Hsp)70, bound to both Bax and the mitochondrial apoptosis inducing factor following cytokine withdrawal, and impeded inhibitors of κB (IκB)-mediated inhibition of nuclear factor-κB anti-apoptotic signalling. Impairment of Hsp70 activity—using a pharmacological Hsp inhibitor or transfecting cells with an Hsp70-blocking antibody—restored the cellular response to mitochondrial apoptosis triggering. Thus, constitutive de-novo cyclin D1 production in B cells delays commitment to apoptosis by inducing Hsp70 chaperoning activity on pre- and post-mitochondrial pro-apoptotic factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Adams JM, Cory S . (2007). The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26: 1324–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agami R, Bernards R . (2000). Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage. Cell 102: 55–66.

    Article  CAS  PubMed  Google Scholar 

  • Alao JP . (2007). The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer 6: 24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Andoh T, Chock PB, Chiueh CC . (2002). The roles of thioredoxin in protection against oxidative stress-induced apoptosis in SH-SY5Y cells. J Biol Chem 277: 9655–9660.

    Article  CAS  PubMed  Google Scholar 

  • Beere HM . (2001). Stressed to death: regulation of apoptotic signaling pathways by the heat shock proteins. Sci STKE 2001: RE1.

    CAS  PubMed  Google Scholar 

  • Bertoni F, Zucca E, Cavalli F . (2004). Mantle cell lymphoma. Curr Opin Hematol 11: 411–418.

    Article  CAS  PubMed  Google Scholar 

  • Bible KC, Boerner SA, Kirkland K, Anderl KL, Bartelt Jr D, Svingen PA et al. (2000). Characterization of an ovarian carcinoma cell line resistant to cisplatin and flavopiridol. Clin Cancer Res 6: 661–670.

    CAS  PubMed  Google Scholar 

  • Burstein E, Duckett CS . (2003). Dying for NF-kappaB? Control of cell death by transcriptional regulation of the apoptotic machinery. Curr Opin Cell Biol 15: 732–737.

    Article  CAS  PubMed  Google Scholar 

  • Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR . (2006). Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31: 164–172.

    Article  CAS  PubMed  Google Scholar 

  • Canman CE, Gilmer TM, Coutts SB, Kastan MB . (1995). Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev 9: 600–611.

    Article  CAS  PubMed  Google Scholar 

  • Casanovas O, Miro F, Estanyol JM, Itarte E, Agell N, Bachs O . (2000). Osmotic stress regulates the stability of cyclin D1 in a p38SAPK2-dependent manner. J Biol Chem 275: 35091–35097.

    Article  CAS  PubMed  Google Scholar 

  • Ciocca DR, Calderwood SK . (2005). Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10: 86–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coco Martin JM, Balkenende A, Verschoor T, Lallemand F, Michalides R . (1999). Cyclin D1 overexpression enhances radiation-induced apoptosis and radiosensitivity in a breast tumor cell line. Cancer Res 59: 1134–1140.

    CAS  PubMed  Google Scholar 

  • Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM et al. (2003). BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424: 952–956.

    Article  CAS  PubMed  Google Scholar 

  • Diehl JA . (2002). Cycling to cancer with cyclin D1. Cancer Biol Ther 1: 226–231.

    Article  CAS  PubMed  Google Scholar 

  • Duquesne F, Florent M, Roue G, Troussard X, Sola B . (2001). Ectopic expression of cyclin D1 impairs the proliferation and enhances the apoptosis of a murine lymphoid cell line. Cell Death Differ 8: 51–62.

    Article  CAS  PubMed  Google Scholar 

  • Ewen ME, Lamb J . (2004). The activities of cyclin D1 that drive tumorigenesis. Trends Mol Med 10: 158–162.

    Article  CAS  PubMed  Google Scholar 

  • Fu M, Wang C, Li Z, Sakamaki T, Pestell RG . (2004). Minireview: Cyclin D1: normal and abnormal functions. Endocrinology 145: 5439–5447.

    Article  CAS  PubMed  Google Scholar 

  • Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G . (2006). Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5: 2592–2601.

    Article  CAS  PubMed  Google Scholar 

  • Garrido C, Gurbuxani S, Ravagnan L, Kroemer G . (2001). Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286: 433–442.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Karin M . (2002). Missing pieces in the NF-kappaB puzzle. Cell 109 (Suppl): 81–96.

    Article  Google Scholar 

  • Gotoh T, Terada K, Oyadomari S, Mori M . (2004). hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ 11: 390–402.

    Article  CAS  PubMed  Google Scholar 

  • Han EK, Begemann M, Sgambato A, Soh JW, Doki Y, Xing WQ et al. (1996). Increased expression of cyclin D1 in a murine mammary epithelial cell line induces p27kip1, inhibits growth, and enhances apoptosis. Cell Growth Differ 7: 699–710.

    CAS  PubMed  Google Scholar 

  • Hengartner MO . (2000). The biochemistry of apoptosis. Nature 407: 770–776.

    Article  CAS  PubMed  Google Scholar 

  • Hochhauser D, Schnieders B, Ercikan-Abali E, Gorlick R, Muise-Helmericks R, Li WW et al. (1996). Effect of cyclin D1 overexpression on drug sensitivity in a human fibrosarcoma cell line. J Natl Cancer Inst 88: 1269–1275.

    Article  CAS  PubMed  Google Scholar 

  • Kamano H, Klempnauer KH . (1997). B-Myb and cyclin D1 mediate heat shock element dependent activation of the human HSP70 promoter. Oncogene 14: 1223–1229.

    Article  CAS  PubMed  Google Scholar 

  • Kehn K, Berro R, Alhaj A, Bottazzi M, Yeh WI, Klase Z et al. (2007). Functional consequences of cyclin D1/BRCA1 interaction in breast cancer cells. Oncogene 26: 5060–5069.

    Article  CAS  PubMed  Google Scholar 

  • Kornmann M, Danenberg KD, Arber N, Beger HG, Danenberg PV, Korc M . (1999). Inhibition of cyclin D1 expression in human pancreatic cancer cells is associated with increased chemosensitivity and decreased expression of multiple chemoresistance genes. Cancer Res 59: 3505–3511.

    CAS  PubMed  Google Scholar 

  • Krieger S, Grunau C, Sabbah M, Sola B . (2005). Cyclin D1 gene activation in human myeloma cells is independent of DNA hypomethylation or histone hyperacetylation. Exp Hematol 33: 652–659.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn DJ, Smith DM, Pross S, Whiteside TL, Dou QP . (2003). Overexpression of interleukin-2 receptor alpha in a human squamous cell carcinoma of the head and neck cell line is associated with increased proliferation, drug resistance, and transforming ability. J Cell Biochem 89: 824–836.

    Article  CAS  PubMed  Google Scholar 

  • Lamb J, Ewen ME . (2003). Cyclin D1 and molecular chaperones: implications for tumorigenesis. Cell Cycle 2: 525–527.

    Article  CAS  PubMed  Google Scholar 

  • Lamb J, Ramaswamy S, Ford HL, Contreras B, Martinez RV, Kittrell FS et al. (2003). A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell 114: 323–334.

    Article  CAS  PubMed  Google Scholar 

  • Le Moguen K, Lincet H, Deslandes E, Hubert-Roux M, Lange C, Poulain L et al. (2006). Comparative proteomic analysis of cisplatin sensitive IGROV1 ovarian carcinoma cell line and its resistant counterpart IGROV1-R10. Proteomics 6: 5183–5192.

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Lee CT, Kim YW, Han SK, Shim YS, Yoo CG . (2005). Heat shock protein 70 negatively regulates the heat-shock-induced suppression of the IkappaB/NF-kappaB cascade by facilitating IkappaB kinase renaturation and blocking its further denaturation. Exp Cell Res 307: 276–284.

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Aneja R, Liu C, Sun L, Gao J, Wang H et al. (2006). Inhibition of the mitotic kinesin Eg5 up-regulates Hsp70 through the phosphatidylinositol 3-kinase/Akt pathway in multiple myeloma cells. J Biol Chem 281: 18090–18097.

    Article  CAS  PubMed  Google Scholar 

  • Macario AJ, Conway de Macario E . (2007). Chaperonopathies and chaperonotherapy. FEBS Lett 581: 3681–3688.

    Article  CAS  PubMed  Google Scholar 

  • Mesaeli N, Phillipson C . (2004). Impaired p53 expression, function, and nuclear localization in calreticulin-deficient cells. Mol Biol Cell 15: 1862–1870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu MY, Menard M, Reed JC, Krajewski S, Pratt MA . (2001). Ectopic expression of cyclin D1 amplifies a retinoic acid-induced mitochondrial death pathway in breast cancer cells. Oncogene 20: 3506–3518.

    Article  CAS  PubMed  Google Scholar 

  • Orr MS, Reinhold W, Yu L, Schreiber-Agus N, O'Connor PM . (1998). An important role for the retinoblastoma protein in staurosporine-induced G1 arrest in murine embryonic fibroblasts. J Biol Chem 273: 3803–3807.

    Article  CAS  PubMed  Google Scholar 

  • Ortega S, Malumbres M, Barbacid M . (2002). Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 1602: 73–87.

    CAS  PubMed  Google Scholar 

  • Palacios C, Gutierrez del AA, Silva A, Collins MK . (2000). The role of p53 in death of IL-3-dependent cells in response to cytotoxic drugs. Oncogene 19: 3556–3559.

    Article  CAS  PubMed  Google Scholar 

  • Palacios R, Steinmetz M . (1985). Il-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell 41: 727–734.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Galan P, Roue G, Villamor N, Montserrat E, Campo E, Colomer D . (2006). The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood 107: 257–264.

    Article  CAS  PubMed  Google Scholar 

  • Ruchalski K, Mao H, Li Z, Wang Z, Gillers S, Wang Y et al. (2006). Distinct hsp70 domains mediate apoptosis-inducing factor release and nuclear accumulation. J Biol Chem 281: 7873–7880.

    Article  CAS  PubMed  Google Scholar 

  • Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES . (2000). Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2: 476–483.

    Article  CAS  PubMed  Google Scholar 

  • Sauvageot N, Pichereau V, Louarme L, Hartke A, Auffray Y, Laplace JM . (2002). Purification, characterization and subunits identification of the diol dehydratase of Lactobacillus collinoides. Eur J Biochem 269: 5731–5737.

    Article  CAS  PubMed  Google Scholar 

  • Seidl S, Kaufmann H, Drach J . (2003). New insights into the pathophysiology of multiple myeloma. Lancet Oncol 4: 557–564.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ . (1996). Cancer cell cycles. Science 274: 1672–1677.

    Article  CAS  PubMed  Google Scholar 

  • Silva A, Wyllie A, Collins MK . (1997). p53 is not required for regulation of apoptosis or radioprotection by interleukin-3. Blood 89: 2717–2722.

    CAS  PubMed  Google Scholar 

  • Steel R, Doherty JP, Buzzard K, Clemons N, Hawkins CJ, Anderson RL . (2004). Hsp72 inhibits apoptosis upstream of the mitochondria and not through interactions with Apaf-1. J Biol Chem 279: 51490–51499.

    Article  CAS  PubMed  Google Scholar 

  • Stuart JK, Myszka DG, Joss L, Mitchell RS, McDonald SM, Xie ZH et al. (1998). Characterization of interactions between the anti-apoptotic protein BAG-1 and Hsc70 molecular chaperones. J Biol Chem 273: 22506–22514.

    Article  CAS  PubMed  Google Scholar 

  • Takayama S, Bimston DN, Matsuzawa S, Freeman BC, AimeSempe C, Xie ZH et al. (1997). BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J 16: 4887–4896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Li Z, Fu M, Bouras T, Pestell RG . (2004). Signal transduction mediated by cyclin D1: from mitogens to cell proliferation: a molecular target with therapeutic potential. Cancer Treat Res 119: 217–237.

    Article  CAS  PubMed  Google Scholar 

  • Yokota S, Kitahara M, Nagata K . (2000). Benzylidene lactam compound, KNK437, a novel inhibitor of acquisition of thermotolerance and heat shock protein induction in human colon carcinoma cells. Cancer Res 60: 2942–2948.

    CAS  PubMed  Google Scholar 

  • Zahnow CA . (2002). CCAAT/enhancer binding proteins in normal mammary development and breast cancer. Breast Cancer Res 4: 113–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A Barbaras and S Cabezas for expert technical assistance and JM Renoir (CNRS UMR 8612, Université de Paris Sud, France) for the gift of anti-Hsp70/90 antibody. The work was financially supported by the Ligue contre le Cancer—Comité du Calvados, Cent pour sang la vie and the Association pour la Recherche contre le Cancer (grant nos. 7791 and 3426) to BS, and by the Spanish Ministry of Education and Science (grant SAF06/8850) to DC. GR received a scholarship from the Ligue Nationale contre le Cancer—Comité du Calvados and has a postdoctoral position with the C-RED programme (Generalitat de Catalunya, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Roué.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roué, G., Pichereau, V., Lincet, H. et al. Cyclin D1 mediates resistance to apoptosis through upregulation of molecular chaperones and consequent redistribution of cell death regulators. Oncogene 27, 4909–4920 (2008). https://doi.org/10.1038/onc.2008.126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.126

Keywords

This article is cited by

Search

Quick links