Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of ETS-like transcription factor 4 as a novel androgen receptor target in prostate cancer cells

Abstract

Transcriptional control by androgens via androgen receptor (AR) is strongly involved in prostate cancer development, but the critical target genes have remained elusive. We have characterized E twenty-six-like transcription factor 4 (ELK4) (also known as serum response factor accessory protein 1) as a novel AR target in human prostate cancer cells. In-silico screening identified three putative AR response elements (AREs) within −10 kb from the transcription start site of ELK4. Both ARE1 at −167/−153 and ARE2 at −481/−467 bound AR in vitro and mediated androgen induction as isolated elements in transcription assays in non-prostate cells. However, merely the ARE2 that cooperates with a proximal forkhead box A1-binding site was critical for the AR-dependent activation of ELK4 promoter in prostate cancer cells. Preferential loading of holo-AR onto the ARE2 and concomitant recruitment of RNA polymerase II onto the ELK4 promoter was confirmed in prostate cancer cells by chromatin immunoprecipitation. Database searches indicated that the expression of ELK4 is markedly increased in prostate cancers relative to normal prostates. Moreover, prostate cancer tissue immunostainings showed that nuclear ELK4 levels are significantly increased in androgen-refractory prostate cancers compared to untreated tumours. Reduction of the amount of ELK4 in LNCaP cells by RNAi retarded cell growth. In conclusion, ELK4 is a direct AR target in prostate cancer cells. Androgens may thus contribute to the growth of prostate cancer via influencing ELK4 levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ayadi A, Zheng H, Sobieszczuk P, Buchwalter G, Moerman P, Alitalo K et al. (2001). Net-targeted mutant mice develop a vascular phenotype and up-regulate egr-1. EMBO J 20: 5139–5152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchwalter G, Gross C, Wasylyk B . (2004). Ets ternary complex transcription factors. Gene 324: 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Cesari F, Brecht S, Vintersten K, Vuong LG, Hofmann M, Klingel K et al. (2004). Mice deficient for the ets transcription factor elk-1 show normal immune responses and mildly impaired neuronal gene activation. Mol Cell Biol 24: 294–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R et al. (2004). Molecular determinants of resistance to antiandrogen therapy. Nat Med 10: 33–39.

    Article  PubMed  Google Scholar 

  • Cleutjens KB, van der Korput HA, van Eekelen CC, van Rooij HC, Faber PW, Trapman J . (1997). An androgen response element in a far upstream enhancer region is essential for high, androgen-regulated activity of the prostate-specific antigen promoter. Mol Endocrinol 11: 148–161.

    Article  CAS  PubMed  Google Scholar 

  • Cleutjens KB, van Eekelen CC, van der Korput HA, Brinkmann AO, Trapman J . (1996). Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter. J Biol Chem 271: 6379–6388.

    Article  CAS  PubMed  Google Scholar 

  • Costello PS, Nicolas RH, Watanabe Y, Rosewell I, Treisman R . (2004). Ternary complex factor SAP-1 is required for Erk-mediated thymocyte positive selection. Nat Immunol 5: 289–298.

    Article  CAS  PubMed  Google Scholar 

  • Culig Z, Comuzzi B, Steiner H, Bartsch G, Hobisch A . (2004). Expression and function of androgen receptor coactivators in prostate cancer. J Steroid Biochem Mol Biol 92: 265–271.

    Article  CAS  PubMed  Google Scholar 

  • Culig Z, Klocker H, Bartsch G, Hobisch A . (2002). Androgen receptors in prostate cancer. Endocr Relat Cancer 9: 155–170.

    Article  CAS  PubMed  Google Scholar 

  • Dalton S, Treisman R . (1992). Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element. Cell 68: 597–612.

    Article  CAS  PubMed  Google Scholar 

  • Edwards S, Campbell C, Flohr P, Shipley J, Giddings I, Te-Poele R et al. (2005). Expression analysis onto microarrays of randomly selected cDNA clones highlights HOXB13 as a marker of human prostate cancer. Br J Cancer 92: 376–381.

    Article  CAS  PubMed  Google Scholar 

  • Feldman BJ, Feldman D . (2001). The development of androgen-independent prostate cancer. Nat Rev Cancer 1: 34–45.

    Article  CAS  PubMed  Google Scholar 

  • Gao N, Zhang J, Rao MA, Case TC, Mirosevich J, Wang Y et al. (2003). The role of hepatocyte nuclear factor-3 alpha (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genes. Mol Endocrinol 17: 1484–1507.

    Article  CAS  PubMed  Google Scholar 

  • Gregory CW, He B, Johnson RT, Ford OH, Mohler JL, French FS et al. (2001). A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res 61: 4315–4319.

    CAS  PubMed  Google Scholar 

  • Han G, Buchanan G, Ittmann M, Harris JM, Yu X, Demayo FJ et al. (2005). Mutation of the androgen receptor causes oncogenic transformation of the prostate. Proc Natl Acad Sci USA 102: 1151–1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinlein CA, Chang C . (2002). The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol Endocrinol 16: 2181–2187.

    Article  CAS  PubMed  Google Scholar 

  • Heinlein CA, Chang C . (2004). Androgen receptor in prostate cancer. Endocr Rev 25: 276–308.

    Article  CAS  PubMed  Google Scholar 

  • Huggins C, Hodges GV . (1941). Studies on prostate cancer. I. The effect of castration, estrogen and androgen injections on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1: 293–297.

    CAS  Google Scholar 

  • Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J et al. (2006). Position-specific chemical modification of siRNAs reduces ‘off-target’ transcript silencing. RNA 12: 1197–1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallio PJ, Palvimo JJ, Mehto M, Jänne OA . (1994). Analysis of androgen receptor-DNA interactions with receptor proteins produced in insect cells. J Biol Chem 269: 11514–11522.

    CAS  PubMed  Google Scholar 

  • Kang Z, Jänne OA, Palvimo JJ . (2004). Coregulator recruitment and histone modifications in transcriptional regulation by the androgen receptor. Mol Endocrinol 18: 2633–2648.

    Article  CAS  PubMed  Google Scholar 

  • Karvonen U, Jänne OA, Palvimo JJ . (2006). Androgen receptor regulates nuclear trafficking and nuclear domain residency of corepressor HDAC7 in a ligand-dependent fashion. Exp Cell Res 312: 3165–3183.

    Article  CAS  PubMed  Google Scholar 

  • Kononen J, Bubendorf L, Kallioniemi A, Bärlund M, Schraml P, Leighton S et al. (1998). Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4: 844–847.

    Article  CAS  PubMed  Google Scholar 

  • Linja MJ, Porkka KP, Kang Z, Savinainen KJ, Jänne OA, Tammela TL et al. (2004). Expression of androgen receptor coregulators in prostate cancer. Clin Cancer Res 10: 1032–1040.

    Article  CAS  PubMed  Google Scholar 

  • Linja MJ, Savinainen KJ, Saramäki OR, Tammela TL, Vessella RL, Visakorpi T . (2001). Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 61: 3550–3555.

    CAS  PubMed  Google Scholar 

  • Luo J, Duggan DJ, Chen Y, Sauvageot J, Ewing CM, Bittner ML et al. (2001). Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res 61: 4683–4688.

    CAS  PubMed  Google Scholar 

  • Magee JA, Araki T, Patil S, Ehrig T, True L, Humphrey PA et al. (2001). Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Res 61: 5692–5696.

    CAS  PubMed  Google Scholar 

  • Maroni PD, Crawford ED . (2006). Screening for prostate cancer in 2006: PSA in the 21st century. NC Med J 67: 136–139.

    Google Scholar 

  • Oettgen P, Finger E, Sun Z, Akbarali Y, Thamrongsak U, Boltax J et al. (2000). PDEF, a novel prostate epithelium-specific ets transcription factor, interacts with the androgen receptor and activates prostate-specific antigen gene expression. J Biol Chem 275: 1216–1225.

    Article  CAS  PubMed  Google Scholar 

  • Palvimo JJ, Kallio PJ, Ikonen T, Mehto M, Jänne OA . (1993). Dominant negative regulation of trans-activation by the rat androgen receptor: roles of the N-terminal domain and heterodimer formation. Mol Endocrinol 7: 1399–1407.

    CAS  PubMed  Google Scholar 

  • Riegman PH, Vlietstra RJ, van der Korput HA, Romijn JC, Trapman J . (1991). Identification and androgen-regulated expression of two major human glandular kallikrein-1 (hGK-1) mRNA species. Mol Cell Endocrinol 76: 181–190.

    Article  CAS  PubMed  Google Scholar 

  • Schuur ER, Henderson GA, Kmetec LA, Miller JD, Lamparski HG, Henderson DR . (1996). Prostate-specific antigen expression is regulated by an upstream enhancer. J Biol Chem 271: 7043–7051.

    Article  CAS  PubMed  Google Scholar 

  • Shaulian E, Karin M . (2002). AP-1 as a regulator of cell life and death. Nat Cell Biol 4: 131–136.

    Article  Google Scholar 

  • Shaw PE, Saxton J . (2003). Ternary complex factors: prime nuclear targets for mitogen-activated protein kinases. Int J Biochem Cell Biol 35: 1210–1226.

    Article  CAS  PubMed  Google Scholar 

  • Stewart AB, Lwaleed BA, Douglas DA, Birch BR . (2005). Current drug therapy for prostate cancer: an overview. Curr Med Chem Anticancer Agents 5: 603–612.

    Article  CAS  PubMed  Google Scholar 

  • Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK et al. (1995). Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 332: 1393–1398.

    Article  CAS  PubMed  Google Scholar 

  • Thompson J, Saatcioglu F, Jänne OA, Palvimo JJ . (2001). Disrupted amino- and carboxyl-terminal interactions of the androgen receptor are linked to androgen insensitivity. Mol Endocrinol 15: 923–935.

    Article  CAS  PubMed  Google Scholar 

  • Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM et al. (2007). Integrative molecular concept modeling of prostate cancer progression. Nat Genet 39: 41–51.

    Article  CAS  PubMed  Google Scholar 

  • Tomlins SA, Mehra R, Rhodes DR, Smith LR, Roulston D, Helgeson BE et al. (2006). TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 66: 3396–3400.

    Article  CAS  PubMed  Google Scholar 

  • Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al. (2005). Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310: 644–648.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Li W, Liu XS, Carroll JS, Jänne OA, Keeton EK et al. (2007). A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 27: 380–392.

    Article  PubMed  PubMed Central  Google Scholar 

  • Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Frierson HF et al. (2001). Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 61: 5974–5978.

    CAS  PubMed  Google Scholar 

  • Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinänen R, Palmberg C et al. (1995). In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9: 401–406.

    Article  CAS  PubMed  Google Scholar 

  • Xiao D, Qu X, Weber HC . (2002). GRP receptor-mediated immediate early gene expression and transcription factor Elk-1 activation in prostate cancer cells. Regul Pept 109: 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L et al. (2004). Gene expression alterations in prostate cancer predicting tumour aggression and preceding development of malignancy. J Clin Oncol 22: 2790–2799.

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Wasylyk C, Ayadi A, Abecassis J, Schalken JA, Rogatsch H et al. (2003). The transcription factor Net regulates the angiogenic switch. Genes Dev 17: 2283–2297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Academy of Finland, Association for International Cancer Research, Finnish Cancer Foundation, Sigrid Jusélius Foundation, Kuopio Naturalists’ Society, Helena Vuorenmies Foundation, Karjalan Sivistysseura and Finnish Union of Experts in Science. We thank Merja Räsänen for skilful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J J Palvimo.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makkonen, H., Jääskeläinen, T., Pitkänen-Arsiola, T. et al. Identification of ETS-like transcription factor 4 as a novel androgen receptor target in prostate cancer cells. Oncogene 27, 4865–4876 (2008). https://doi.org/10.1038/onc.2008.125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.125

Keywords

This article is cited by

Search

Quick links