Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

High-resolution, dual-platform aCGH analysis reveals frequent HIPK2 amplification and increased expression in pilocytic astrocytomas

Abstract

Pilocytic astrocytomas (PAs, WHO grade I) are the most common brain tumors in the pediatric and adolescent population, accounting for approximately one-fifth of central nervous system tumors. Because few consistent molecular alterations have been identified in PAs compared to higher grade gliomas, we performed array comparative genomic hybridization using two independent commercial array platforms. Although whole chromosomal gains and losses were not observed, a 1-Mb amplified region of 7q34 was detected in multiple patient samples using both array platforms. Copy-number gain was confirmed in an independent tumor sample set by quantitative PCR, and this amplification was correlated to both increased mRNA and protein expression of HIPK2, a homeobox-interacting protein kinase associated with malignancy, contained within this locus. Furthermore, overexpression of wild-type HIPK2, but not a kinase-inactive mutant, in a glioma cell line conferred a growth advantage in vitro. Collectively, these results illustrate the power and necessity of implementing high-resolution, multiple-platform genomic analyses to discover small and subtle, but functionally significant, genomic alterations associated with low-grade tumor formation and growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Agamanolis DP, Malone JM . (1995). Chromosomal abnormalities in 47 pediatric brain tumors. Cancer Genet Cytogenet 81: 125–134.

    Article  CAS  Google Scholar 

  • Albertson DG . (2006). Gene amplification in cancer. Trends Genet 22: 447–455.

    Article  CAS  Google Scholar 

  • Arjona D, Rey JA, Taylor SM . (2006). Early genetic changes involved in low-grade astrocytic tumor development. Curr Mol Med 6: 645–650.

    Article  CAS  Google Scholar 

  • Calzado MA, Renner F, Roscic A, Schmitz ML . (2007). HIPK2: a versatile switchboard regulating the transcription machinery and cell death. Cell Cycle 6: 139–143.

    Article  CAS  Google Scholar 

  • Cheng Y, Pang JC, Ng HK, Ding M, Zhang SF, Zheng J et al. (2000). Pilocytic astrocytomas do not show most of the genetic changes commonly seen in diffuse astrocytomas. Histopathology 37: 437–444.

    Article  CAS  Google Scholar 

  • D'Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S et al. (2002). Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 4: 11–19.

    Article  CAS  Google Scholar 

  • Harada J, Kokura K, Kanei-Ishii C, Nomura T, Khan MM, Kim Y et al. (2003). Requirement of the co-repressor homeodomain-interacting protein kinase 2 for ski-mediated inhibition of bone morphogenetic protein-induced transcriptional activation. J Biol Chem 278: 38998–39005.

    Article  CAS  Google Scholar 

  • Hayes VM, Dirven CM, Dam A, Verlind E, Molenaar WM, Mooij JJ et al. (1999). High frequency of TP53 mutations in juvenile pilocytic astrocytomas indicates role of TP53 in the development of these tumors. Brain Pathol 9: 463–467.

    Article  CAS  Google Scholar 

  • Ishii N, Sawamura Y, Tada M, Daub DM, Janzer RC, Meagher-Villemure M et al. (1998). Absence of p53 gene mutations in a tumor panel representative of pilocytic astrocytoma diversity using a p53 functional assay. Int J Cancer 76: 797–800.

    Article  CAS  Google Scholar 

  • Jenkins RB, Kimmel DW, Moertel CA, Schultz CG, Scheithauer BW, Kelly PJ et al. (1989). A cytogenetic study of 53 human gliomas. Cancer Genet Cytogenet 39: 253–279.

    Article  CAS  Google Scholar 

  • Jones DT, Ichimura K, Liu L, Pearson DM, Plant K, Collins VP . (2006). Genomic analysis of pilocytic astrocytomas at 0.97 Mb resolution shows an increasing tendency toward chromosomal copy number change with age. J Neuropathol Exp Neurol 65: 1049–1058.

    Article  CAS  Google Scholar 

  • Kim YH, Choi CY, Lee SJ, Conti MA, Kim Y . (1998). Homeodomain-interacting protein kinases, a novel family of co-repressors for homeodomain transcription factors. J Biol Chem 273: 25875–25879.

    Article  CAS  Google Scholar 

  • Konigshoff M, Wilhelm J, Bohle RM, Pingoud A, Hahn M . (2003). HER-2/neu gene copy number quantified by real-time PCR: comparison of gene amplification, heterozygosity, and immunohistochemical status in breast cancer tissue. Clin Chem 49: 219–229.

    Article  CAS  Google Scholar 

  • Koschny R, Koschny T, Froster UG, Krupp W, Zuber MA . (2002). Comparative genomic hybridization in glioma: a meta-analysis of 509 cases. Cancer Genet Cytogenet 135: 147–159.

    Article  CAS  Google Scholar 

  • Lin M, Wei LJ, Sellers WR, Lieberfarb M, Wong WH, Li C . (2004). dChipSNP: significance curve and clustering of SNP-array-based loss-of-heterozygosity data. Bioinformatics 20: 1233–1240.

    Article  CAS  Google Scholar 

  • Nannya Y, Sanada M, Nakazaki K, Hosoya N, Wang L, Hangaishi A et al. (2005). A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res 65: 6071–6079.

    Article  CAS  Google Scholar 

  • Ohgaki H . (2005). Genetic pathways to glioblastomas. Neuropathology 25: 1–7.

    Article  Google Scholar 

  • Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL et al. (2004). Genetic pathways to glioblastoma: a population-based study. Cancer Res 64: 6892–6899.

    Article  CAS  Google Scholar 

  • Pierantoni GM, Bulfone A, Pentimalli F, Fedele M, Iuliano R, Santoro M et al. (2002). The homeodomain-interacting protein kinase 2 gene is expressed late in embryogenesis and preferentially in retina, muscle, and neural tissues. Biochem Biophys Res Commun 290: 942–947.

    Article  CAS  Google Scholar 

  • Sanoudou D, Tingby O, Ferguson-Smith MA, Collins VP, Coleman N . (2000). Analysis of pilocytic astrocytoma by comparative genomic hybridization. Br J Cancer 82: 1218–1222.

    Article  CAS  Google Scholar 

  • Schmidt MC, Antweiler S, Urban N, Mueller W, Kuklik A, Meyer-Puttlitz B et al. (2002). Impact of genotype and morphology on the prognosis of glioblastoma. J Neuropathol Exp Neurol 61: 321–328.

    Article  CAS  Google Scholar 

  • Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P et al. (2004). Large-scale copy number polymorphism in the human genome. Science 305: 525–528.

    Article  CAS  Google Scholar 

  • Sharma MK, Watson MA, Lyman M, Perry A, Aldape KD, Deak F et al. (2006). Matrilin-2 expression distinguishes clinically relevant subsets of pilocytic astrocytoma. Neurology 66: 127–130.

    Article  CAS  Google Scholar 

  • Tada K, Kochi M, Saya H, Kuratsu J, Shiraishi S, Kamiryo T et al. (2003). Preliminary observations on genetic alterations in pilocytic astrocytomas associated with neurofibromatosis 1. Neuro Oncol 5: 228–234.

    Article  CAS  Google Scholar 

  • Thiel G, Losanowa T, Kintzel D, Nisch G, Martin H, Vorpahl K et al. (1992). Karyotypes in 90 human gliomas. Cancer Genet Cytogenet 58: 109–120.

    Article  CAS  Google Scholar 

  • Venkatraman ES, Olshen AB . (2007). A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23: 657–663.

    Article  CAS  Google Scholar 

  • von Deimling A, Fimmers R, Schmidt MC, Bender B, Fassbender F, Nagel J et al. (2000). Comprehensive allelotype and genetic anaysis of 466 human nervous system tumors. J Neuropathol Exp Neurol 59: 544–558.

    Article  CAS  Google Scholar 

  • Wei G, Ku S, Ma GK, Saito S, Tang AA, Zhang J et al. (2007). HIPK2 represses beta-catenin-mediated transcription, epidermal stem cell expansion, and skin tumorigenesis. Proc Natl Acad Sci USA 104: 13040–13045.

    Article  CAS  Google Scholar 

  • Wemmert S, Romeike BF, Ketter R, Steudel WI, Zang KD, Urbschat S . (2006). Intratumoral genetic heterogeneity in pilocytic astrocytomas revealed by CGH-analysis of microdissected tumor cells and FISH on tumor tissue sections. Int J Oncol 28: 353–360.

    PubMed  Google Scholar 

  • White FV, Anthony DC, Yunis EJ, Tarbell NJ, Scott RM, Schofield DE . (1995). Nonrandom chromosomal gains in pilocytic astrocytomas of childhood. Hum Pathol 26: 979–986.

    Article  CAS  Google Scholar 

  • Wiggins AK, Wei G, Doxakis E, Wong C, Tang AA, Zang K et al. (2004). Interaction of Brn3a and HIPK2 mediates transcriptional repression of sensory neuron survival. J Cell Biol 167: 257–267.

    Article  CAS  Google Scholar 

  • Zattara-Cannoni H, Gambarelli D, Lena G, Dufour H, Choux M, Grisoli F et al. (1998). Are juvenile pilocytic astrocytomas benign tumors? A cytogenetic study in 24 cases. Cancer Genet Cytogenet 104: 157–160.

    Article  CAS  Google Scholar 

  • Zhang J, Pho V, Bonasera SJ, Holtzman J, Tang AT, Hellmuth J et al. (2007). Essential function of HIPK2 in TGFbeta-dependent survival of midbrain dopamine neurons. Nat Neurosci 10: 77–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

HIPK2 plasmids were generously provided by Dr Gabriella D'Orazi (Regina Elena Cancer Institute, Rome Italy).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D H Gutmann or R Nagarajan.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshmukh, H., Yeh, T., Yu, J. et al. High-resolution, dual-platform aCGH analysis reveals frequent HIPK2 amplification and increased expression in pilocytic astrocytomas. Oncogene 27, 4745–4751 (2008). https://doi.org/10.1038/onc.2008.110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.110

Keywords

This article is cited by

Search

Quick links