Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer

Abstract

MicroRNAs are small, non-coding RNAs that influence gene regulatory networks by post-transcriptional regulation of specific messenger RNA targets. MicroRNA expression is dysregulated in human malignancies, frequently leading to loss of expression of certain microRNAs. We report that expression of hsa-miR-342, a microRNA encoded in an intron of the gene EVL, is commonly suppressed in human colorectal cancer. The expression of hsa-miR-342 is coordinated with that of EVL and our results indicate that the mechanism of silencing is CpG island methylation upstream of EVL. We found methylation at the EVL/hsa-miR-342 locus in 86% of colorectal adenocarcinomas and in 67% of adenomas, indicating that it is an early event in colorectal carcinogenesis. In addition, we observed a higher frequency of methylation (56%) in histologically normal colorectal mucosa from individuals with concurrent cancer compared to mucosa from individuals without colorectal cancer (12%), suggesting the existence of a ‘field defect’ involving methylated EVL/hsa-miR-342. Furthermore, reconstitution of hsa-miR-342 in the colorectal cancer cell line HT-29 induced apoptosis, suggesting that this microRNA could function as a proapoptotic tumor suppressor. In aggregate, these results support a novel mechanism for silencing intronic microRNAs in cancer by epigenetic alterations of cognate host genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D et al. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96: 6745–6750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N et al. (2006). Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5: 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  • Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M et al. (2007). The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67: 1419–1423.

    Article  CAS  PubMed  Google Scholar 

  • Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz Jr LA, Sjoblom T et al. (2006). The colorectal microRNAome. Proc Natl Acad Sci USA 103: 3687–3692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grady WM, Rajput A, Lutterbaugh J, Markowitz S . (2001). Detection of aberrantly methylated hMLH1 promoter DNA in the serum of patients with microsatellite unstable colon cancer. Cancer Res 61: 900–902.

    CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ . (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34 (Database issue): D140–D144.

    Article  CAS  PubMed  Google Scholar 

  • He L, Hannon GJ . (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5: 522–531.

    Article  CAS  PubMed  Google Scholar 

  • Kim YK, Kim VN . (2007). Processing of intronic microRNAs. EMBO J 26: 775–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YH, Petko Z, Dzieciatkowski S, Lin L, Ghiassi M, Stain S et al. (2006). CpG island methylation of genes accumulates during the adenoma progression step of the multistep pathogenesis of colorectal cancer. Genes Chromosomes Cancer 45: 781–789.

    Article  CAS  PubMed  Google Scholar 

  • Kondo Y, Issa JP . (2004). Epigenetic changes in colorectal cancer. Cancer Metastasis Rev 23: 29–39.

    Article  CAS  PubMed  Google Scholar 

  • Krause M, Dent EW, Bear JE, Loureiro JJ, Gertler FB . (2003). Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol 19: 541–564.

    Article  CAS  PubMed  Google Scholar 

  • Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. (2005). Combinatorial microRNA target predictions. Nat Genet 37: 495–500.

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP . (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.

    Article  CAS  PubMed  Google Scholar 

  • Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F et al. (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67: 1424–1429.

    Article  CAS  PubMed  Google Scholar 

  • Michael MZ, O’Connor SM, van Holst Pellekaan NG, Young GP, James RJ . (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1: 882–891.

    CAS  PubMed  Google Scholar 

  • Myohanen S, Baylin S, Herman J . (1998). Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Res 58: 591–593.

    CAS  PubMed  Google Scholar 

  • Notterman DA, Alon U, Sierk AJ, Levine AJ . (2001). Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Res 61: 3124–3130.

    CAS  PubMed  Google Scholar 

  • Ohm JE, Baylin SB . (2007). Stem cell chromatin patterns: an instructive mechanism for DNA hypermethylation? Cell Cycle 6: 1040–1043.

    Article  CAS  PubMed  Google Scholar 

  • Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB et al. (2007). Oncomine 3.0: genes, pathways, and networks in a collection of 18 000 cancer gene expression profiles. Neoplasia 9: 166–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A . (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res 14 (10A): 1902–1910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saini HK, Griffiths-Jones S, Enright AJ . (2007). Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci USA 104: 17719–17724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito Y, Jones PA . (2006). Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle 5: 2220–2222.

    Article  CAS  PubMed  Google Scholar 

  • Toyota M, Ho C, Ahuja N, Jair KW, Li Q, Ohe-Toyota M et al. (1999). Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res 59: 2307–2312.

    CAS  PubMed  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103: 2257–2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C et al. (2007). Epigenetic stem cell signature in cancer. Nat Genet 39: 157–158.

    Article  CAS  PubMed  Google Scholar 

  • Wijnhoven BP, Michael MZ, Watson DI . (2007). MicroRNAs and cancer. Br J Surg 94: 23–30.

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA . (2007). MicroRNAs as oncogenes and tumor suppressors. Dev Biol 302: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Zou TT, Selaru FM, Xu Y, Shustova V, Yin J, Mori Y et al. (2002). Application of cDNA microarrays to generate a molecular taxonomy capable of distinguishing between colon cancer and normal colon. Oncogene 21: 4855–4862.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Beatrice Knudsen for advice regarding tissue processing and Dr Julio Vasquez and Dr Dave McDonald for confocal microscopy. We acknowledge support from the Damon Runyon Lilly Cancer Research Fund (to WMG), the Presidential Early Career Award for Scientists and Engineers (to WMG), the Fred Hutchinson Cancer Research Center (FHCRC) Early Detection Initiative Pilot Project Program (to WMG), the V Foundation Scholar Grant (to MT) and the FHCRC Molecular Diagnostics Pilot Project Program (to MT). These studies were carried out with the use of the experimental histopathology, genomics and scientific imaging shared resources at the FHCRC. The Cooperative Human Tissue Network provided some of the primary tissue samples used in the studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Tewari.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grady, W., Parkin, R., Mitchell, P. et al. Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 27, 3880–3888 (2008). https://doi.org/10.1038/onc.2008.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.10

Keywords

This article is cited by

Search

Quick links