Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Idiosyncratic tuning of tRNAs to achieve uniform ribosome binding

Abstract

The binding of seven tRNA anticodons to their complementary codons on Escherichia coli ribosomes was substantially impaired, as compared with the binding of their natural tRNAs, when they were transplanted into tRNA2Ala. An analysis of chimeras composed of tRNA2Ala and various amounts of either tRNA3Gly or tRNA2Arg indicates that the presence of the parental 32-38 nucleotide pair is sufficient to restore ribosome binding of the transplanted anticodons. Furthermore, mutagenesis of tRNA2Ala showed that its highly conserved A32-U38 pair serves to weaken ribosome affinity. We propose that this negative binding determinant is used to offset the very tight codon-anticodon interaction of tRNA2Ala. This suggests that each tRNA sequence has coevolved with its anticodon to tune ribosome affinity to a value that is the same for all tRNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ACG anticodon transplanted into tRNA2Ala binds poorly to E. coli 70S ribosomes.
Figure 2: Chimeric tRNAs combining tRNA2Ala (black) with tRNA3Gly (red, upper row) or tRNA2Arg (green, lower row).
Figure 3: Rate of dissociation of tRNA2Ala with different 32-38 pairs from the A site.
Figure 4: Ribosome binding determinants in the tRNA2Ala body.

Similar content being viewed by others

References

  1. Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5 A resolution. Science 292, 883–896 (2001).

    Article  CAS  Google Scholar 

  2. Samaha, R.R., Green, R. & Noller, H.F. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature 377, 309–314 (1995).

    Article  CAS  Google Scholar 

  3. Kim, D.F. & Green, R. Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol. Cell 4, 859–864 (1999).

    Article  CAS  Google Scholar 

  4. Carter, A.P. et al. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407, 340–348 (2000).

    Article  CAS  Google Scholar 

  5. von Ahsen, U., Green, R., Schroeder, R. & Noller, H.F. Identification of 2′-hydroxyl groups required for interaction of a tRNA anticodon stem-loop region with the ribosome. RNA 3, 49–56 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schnitzer, W. & von Ahsen, U. Identification of specific Rp-phosphate oxygens in the tRNA anticodon loop required for ribosomal P-site binding. Proc. Natl. Acad. Sci. USA 94, 12823–12828 (1997).

    Article  CAS  Google Scholar 

  7. Feinberg, J.S. & Joseph, S. Identification of molecular interactions between P-site tRNA and the ribosome essential for translocation. Proc. Natl. Acad. Sci. USA 98, 11120–11125 (2001).

    Article  CAS  Google Scholar 

  8. Phelps, S.S., Jerinic, O. & Joseph, S. Universally conserved interactions between the ribosome and the anticodon stem-loop of A site tRNA important for translocation. Mol. Cell 10, 799–807 (2002).

    Article  CAS  Google Scholar 

  9. Fahlman, R.P., Dale, T. & Uhlenbeck, O.C. Uniform binding of aminoacylated transfer RNAs to the ribosomal A and P sites. Mol. Cell 16, 799–805 (2004).

    Article  CAS  Google Scholar 

  10. Rose, S.J., III, Lowary, P.T. & Uhlenbeck, O.C. Binding of yeast tRNAPhe anticodon arm to Escherichia coli 30 S ribosomes. J. Mol. Biol. 167, 103–117 (1983).

    Article  CAS  Google Scholar 

  11. Ogle, J.M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001).

    Article  CAS  Google Scholar 

  12. Sanbonmatsu, K.Y. & Joseph, S. Understanding discrimination by the ribosome: stability testing and groove measurement of codon-anticodon pairs. J. Mol. Biol. 328, 33–47 (2003).

    Article  CAS  Google Scholar 

  13. Agris, P.F. Decoding the genome: a modified view. Nucleic Acids Res. 32, 223–238 (2004).

    Article  CAS  Google Scholar 

  14. Kleina, L.G. et al. Construction of Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency. J. Mol. Biol. 213, 705–717 (1990).

    Article  CAS  Google Scholar 

  15. Komine, Y. & Inokuchi, H. Importance of the G27–A43 mismatch at the anticodon stem of Escherichia coli tRNA(Thr2). FEBS Lett. 272, 55–57 (1990).

    Article  CAS  Google Scholar 

  16. Raftery, L.A. & Yarus, M. Systematic alterations in the anticodon arm make tRNA(Glu)-Suoc a more efficient suppressor. EMBO J. 6, 1499–1506 (1987).

    Article  CAS  Google Scholar 

  17. Hirsh, D. Tryptophan transfer RNA as the UGA suppressor. J. Mol. Biol. 58, 439–458 (1971).

    Article  CAS  Google Scholar 

  18. Fahlman, R.P. & Uhlenbeck, O.C. Contribution of the esterified amino acid to the binding of aminoacylated tRNAs to the ribosomal P- and A-sites. Biochemistry 43, 7575–7583 (2004).

    Article  CAS  Google Scholar 

  19. Ogle, J.M., Murphy, F.V., Tarry, M.J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732 (2002).

    Article  CAS  Google Scholar 

  20. Auffinger, P. & Westhof, E. Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes. J. Mol. Biol. 292, 467–483 (1999).

    Article  CAS  Google Scholar 

  21. Sprinzl, M. et al. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 26, 148–153 (1998).

    Article  CAS  Google Scholar 

  22. Moazed, D. & Noller, H.F. Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16 S rRNA. J. Mol. Biol. 211, 135–145 (1990).

    Article  CAS  Google Scholar 

  23. von Ahsen, U. & Noller, H.F. Identification of bases in 16S rRNA essential for tRNA binding at the 30S ribosomal P site. Science 267, 234–237 (1995).

    Article  CAS  Google Scholar 

  24. Noller, H.F., Hoang, L. & Fredrick, K. The 30S ribosomal P site: a function of 16S rRNA. FEBS Lett. 579, 855–858 (2005).

    Article  CAS  Google Scholar 

  25. Herr, A.J., Atkins, J.F. & Gesteland, R.F. Mutations which alter the elbow region of tRNA2Gly reduce T4 gene 60 translational bypassing efficiency. EMBO J. 18, 2886–2896 (1999).

    Article  CAS  Google Scholar 

  26. Herr, A.J. et al. Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA. J. Mol. Biol. 309, 1029–1048 (2001).

    Article  CAS  Google Scholar 

  27. Baranov, P.V., Gesteland, R.F. & Atkins, J.F. P-site tRNA is a crucial initiator of ribosomal frameshifting. RNA 10, 221–230 (2004).

    Article  CAS  Google Scholar 

  28. Schultz, D.W. & Yarus, M. tRNA structure and ribosomal function. I. tRNA nucleotide 27–43 mutations enhance first position wobble. J. Mol. Biol. 235, 1381–1394 (1994).

    Article  CAS  Google Scholar 

  29. Hou, Y.M. & Schimmel, P. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature 333, 140–145 (1988).

    Article  CAS  Google Scholar 

  30. McClain, W.H., Schneider, J., Bhattacharya, S. & Gabriel, K. The importance of tRNA backbone-mediated interactions with synthetase for aminoacylation. Proc. Natl. Acad. Sci. USA 95, 460–465 (1998).

    Article  CAS  Google Scholar 

  31. Yarus, M. et al. The translational efficiency of tRNA is a property of the anticodon arm. J. Biol. Chem. 261, 10496–10505 (1986).

    CAS  PubMed  Google Scholar 

  32. Lustig, F. et al. The nucleotide in position 32 of the tRNA anticodon loop determines ability of anticodon UCC to discriminate among glycine codons. Proc. Natl. Acad. Sci. USA 90, 3343–3347 (1993).

    Article  CAS  Google Scholar 

  33. Claesson, C. et al. Glycine codon discrimination and the nucleotide in position 32 of the anticodon loop. J. Mol. Biol. 247, 191–196 (1995).

    Article  CAS  Google Scholar 

  34. O'Connor, M. tRNA imbalance promotes -1 frameshifting via near-cognate decoding. J. Mol. Biol. 279, 727–736 (1998).

    Article  CAS  Google Scholar 

  35. Auffinger, P. & Westhof, E. An extended structural signature for the tRNA anticodon loop. RNA 7, 334–341 (2001).

    Article  CAS  Google Scholar 

  36. Dao, V. et al. Ribosome binding of DNA analogs of tRNA requires base modifications and supports the “extended anticodon”. Proc. Natl. Acad. Sci. USA 91, 2125–2129 (1994).

    Article  CAS  Google Scholar 

  37. Cabello-Villegas, J., Winkler, M.E. & Nikonowicz, E.P. Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe). J. Mol. Biol. 319, 1015–1034 (2002).

    Article  CAS  Google Scholar 

  38. Stuart, J.W. et al. Functional anticodon architecture of human tRNALys3 includes disruption of intraloop hydrogen bonding by the naturally occurring amino acid modification, t6A. Biochemistry 39, 13396–13404 (2000).

    Article  CAS  Google Scholar 

  39. Shu, Z. & Bevilacqua, P.C. Isolation and characterization of thermodynamically stable and unstable RNA hairpins from a triloop combinatorial library. Biochemistry 38, 15369–15379 (1999).

    Article  CAS  Google Scholar 

  40. Battle, D.J. & Doudna, J.A. Specificity of RNA-RNA helix recognition. Proc. Natl. Acad. Sci. USA 99, 11676–11681 (2002).

    Article  CAS  Google Scholar 

  41. Pape, T., Wintermeyer, W. & Rodnina, M.V. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J. 17, 7490–7497 (1998).

    Article  CAS  Google Scholar 

  42. Savelsbergh, A. et al. An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. Mol. Cell 11, 1517–1523 (2003).

    Article  CAS  Google Scholar 

  43. Atkins, J.F. et al. Poking a hole in the sanctity of the triplet code: inferences for framing. in The Ribosome: Structure, Function, Antibiotics, and Cellular Interactions (eds. Garret, R.A. et al.) 369–383 (American Society for Microbiology Press, Washington, DC, 2000).

    Google Scholar 

  44. Yarus, M. Translational efficiency of transfer RNA's: uses of an extended anticodon. Science 218, 646–652 (1982).

    Article  CAS  Google Scholar 

  45. Yusupova, G.Z., Yusupov, M.M., Cate, J.H. & Noller, H.F. The path of messenger RNA through the ribosome. Cell 106, 233–241 (2001).

    Article  CAS  Google Scholar 

  46. Sampson, J.R. & Uhlenbeck, O.C. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc. Natl. Acad. Sci. USA 85, 1033–1037 (1988).

    Article  CAS  Google Scholar 

  47. Wolfson, A.D. & Uhlenbeck, O.C. Modulation of tRNAAla identity by inorganic pyrophosphatase. Proc. Natl. Acad. Sci. USA 99, 5965–5970 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health Grant GM 37552 to O.C.U. We would also like to thank M. Saks for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olke C Uhlenbeck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olejniczak, M., Dale, T., Fahlman, R. et al. Idiosyncratic tuning of tRNAs to achieve uniform ribosome binding. Nat Struct Mol Biol 12, 788–793 (2005). https://doi.org/10.1038/nsmb978

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb978

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing