Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution from DNA to RNA recognition by the bI3 LAGLIDADG maturase

Abstract

LAGLIDADG endonucleases bind across adjacent major grooves via a saddle-shaped surface and catalyze DNA cleavage. Some LAGLIDADG proteins, called maturases, facilitate splicing by group I introns, raising the issue of how a DNA-binding protein and an RNA have evolved to function together. In this report, crystallographic analysis shows that the global architecture of the bI3 maturase is unchanged from its DNA-binding homologs; in contrast, the endonuclease active site, dispensable for splicing facilitation, is efficiently compromised by a lysine residue replacing essential catalytic groups. Biochemical experiments show that the maturase binds a peripheral RNA domain 50 Å from the splicing active site, exemplifying long-distance structural communication in a ribonucleoprotein complex. The bI3 maturase nucleic acid recognition saddle interacts at the RNA minor groove; thus, evolution from DNA to RNA function has been mediated by a switch from major to minor groove interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Translation of the bI3 maturase holoprotein and core maturase domain.
Figure 2: Overview of the bI3 maturase structure.
Figure 3: Conserved shape complementarity between LAGLIDADG proteins and consecutive DNA major grooves.
Figure 4: Superposition of the bI3 maturase (in)active site with catalytic residues and divalent ions from the I-CreI DNA endonuclease–DNA substrate complex.
Figure 5: Solvent-based hydroxyl radical footprinting of the bI3 maturase–P5-P4-P6 domain complex.
Figure 6: Site-directed hydroxyl radical footprinting of the bI3 maturase–P5-P4-P6 domain complex.
Figure 7: Maturase-RNA interactions.
Figure 8: Maturase-facilitated folding of the bI3 intron RNA via action at a distance.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

Protein Data Bank

References

  1. Cech, T.R. Self splicing of group I introns. Annu. Rev. Biochem. 59, 543–568 (1990).

    Article  CAS  Google Scholar 

  2. Michel, F. & Westhof, E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J. Mol. Biol. 216, 585–610 (1990).

    Article  CAS  Google Scholar 

  3. Adams, P.L., Stahley, M.R., Kosek, A.B., Wang, J. & Strobel, S.A. Crystal structure of a self-splicing group I intron with both exons. Nature 430, 45–50 (2004).

    Article  CAS  Google Scholar 

  4. Golden, B.L., Kim, H. & Chase, E. Crystal structure of a phage Twort group I ribozyme-product complex. Nat. Struct. Mol. Biol. 12, 82–89 (2004).

    Article  Google Scholar 

  5. Weeks, K.M. Protein-facilitated RNA folding. Curr. Opin. Struct. Biol. 7, 336–342 (1997).

    Article  CAS  Google Scholar 

  6. Hur, M., Geese, W.J. & Waring, R.B. Self-splicing activity of the mitochondrial group-I introns from Aspergillus nidulans and related introns from other species. Curr. Genet. 32, 399–407 (1997).

    Article  CAS  Google Scholar 

  7. Bassi, G.S., de Oliveira, D.M., White, M.F. & Weeks, K.M. Recruitment of intron-encoded and co-opted proteins in splicing of the bI3 group I intron RNA. Proc. Natl. Acad. Sci. USA 99, 128–133 (2002).

    Article  CAS  Google Scholar 

  8. Lambowitz, A.M., Caprara, M.G., Zimmerly, S. & Perlman, P.S. Group I and Group II ribozymes as RNPs: clues to the past and guides to the future. in The RNA World (eds. Gesteland, R.F., Cech, T.R. & Atkins, J.F.) 451–485 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1999).

    Google Scholar 

  9. Rho, S.B. & Martinis, S.A. The bI4 group I intron binds directly to both its protein splicing partners, a tRNA synthetase and maturase, to facilitate RNA splicing activity. RNA 6, 1882–1894 (2000).

    Article  CAS  Google Scholar 

  10. Lazowska, J., Jacq, C. & Slonimski, P.P. Sequence of introns and flanking exons in wild-type and box3 mutants of cytochrome b reveals an interlaced splicing protein coded by an intron. Cell 22, 333–348 (1980).

    Article  CAS  Google Scholar 

  11. Szczepanek, T. & Lazowska, J. Replacement of two non-adjacent amino acids in the S. cerevisiae bi2 intron-encoded RNA maturase is sufficient to gain a homing-endonuclease activity. EMBO J. 15, 3758–3767 (1996).

    Article  CAS  Google Scholar 

  12. Ho, Y., Kim, S.J. & Waring, R.B. A protein encoded by a group I intron in Aspergillus nidulans directly assists RNA splicing and is a DNA endonuclease. Proc. Natl. Acad. Sci. USA 94, 8994–8999 (1997).

    Article  CAS  Google Scholar 

  13. Gampel, A. & Tzagoloff, A. In vitro splicing of the terminal intervening sequence of Saccharomyces cerevisiae cytochrome b pre-mRNA. Mol. Cell. Biol. 7, 2545–2551 (1987).

    Article  CAS  Google Scholar 

  14. Weeks, K.M. & Cech, T.R. Efficient protein-facilitated splicing of the yeast mitochondrial bI5 intron. Biochemistry 34, 7728–7738 (1995).

    Article  CAS  Google Scholar 

  15. Bolduc, J.M. et al. Structural and biochemical analyses of DNA and RNA binding by a bifunctional homing endonuclease and group I intron splicing factor. Genes Dev. 17, 2875–2888 (2003).

    Article  CAS  Google Scholar 

  16. Paukstelis, P.J. et al. A tyrosyl-tRNA synthetase adapted to function in group I intron splicing by acquiring a new RNA binding surface. Mol. Cell 17, 417–428 (2005).

    Article  CAS  Google Scholar 

  17. Dalgaard, J. et al. Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family. Nucleic Acids Res. 25, 4626–4638 (1997).

    Article  CAS  Google Scholar 

  18. Chevalier, B.S. & Stoddard, B.L. Homing endonucleases: structural and functional insight into the catalysis of intron/intein mobility. Nucleic Acids Res. 29, 3757–3774 (2001).

    Article  CAS  Google Scholar 

  19. Belfort, M. Two for the price of one: a bifunctional intron-encoded DNA endonuclease-RNA maturase. Genes Dev. 17, 2860–2863 (2003).

    Article  CAS  Google Scholar 

  20. Bassi, G.S. & Weeks, K.M. Kinetic and thermodynamic framework for assembly of the six-component bI3 group I intron ribonucleoprotein catalyst. Biochemistry 42, 9980–9988 (2003).

    Article  CAS  Google Scholar 

  21. Lazowska, J. et al. Protein encoded by the third intron of cytochrome b gene in Saccharomyces cerevisiae is an mRNA maturase. Analysis of mitochondrial mutants, RNA transcripts proteins and evolutionary relationships. J. Mol. Biol. 205, 275–289 (1989).

    Article  CAS  Google Scholar 

  22. Galburt, E.A. & Stoddard, B.L. Catalytic mechanisms of restriction and homing endonucleases. Biochemistry 41, 13851–13860 (2002).

    Article  CAS  Google Scholar 

  23. Silva, G.H., Dalgaard, J.Z., Belfort, M. & Van Roey, P. Crystal structure of the thermostable archaeal intron-encoded endonuclease I-DmoI. J. Mol. Biol. 286, 1123–1136 (1999).

    Article  CAS  Google Scholar 

  24. Heath, P.J., Stephens, K.M., Monnat, R.J.J. & Stoddard, B.L. The structure of I–Crel, a group I intron-encoded homing endonuclease. Nat. Struct. Biol. 4, 468–476 (1997).

    Article  CAS  Google Scholar 

  25. Chevalier, B.S., Monnat, R.J.J. & Stoddard, B.L. The homing endonuclease I–CreI used three metals, one of which is shared between the two active sites. Nat. Struct. Biol. 8, 312–316 (2001).

    Article  CAS  Google Scholar 

  26. Chatterjee, P., Brady, K.L., Solem, A., Ho, Y. & Caprara, M.G. Functionally distinct nucleic acid binding sites for a group I intron encoded RNA maturase/DNA homing endonuclease. J. Mol. Biol. 329, 239–251 (2003).

    Article  CAS  Google Scholar 

  27. Goddard, M.R. & Burt, A. Recurrent invasion and extinction of a selfish gene. Proc. Natl. Acad. Sci. USA 96, 13880–13885 (1999).

    Article  CAS  Google Scholar 

  28. Chevalier, B. et al. Metal-dependent DNA cleavage mechanism of the I–CreI LAGLIDADG homing endonuclease. Biochemistry 43, 14015–14026 (2004).

    Article  CAS  Google Scholar 

  29. Seligman, L.M. et al. Mutations altering the cleavage specificity of a homing endonuclease. Nucleic Acids Res. 30, 3870–3879 (2002).

    Article  CAS  Google Scholar 

  30. Latham, J.A. & Cech, T.R. Defining the inside and outside of a catalytic RNA molecule. Science 245, 276–282 (1989).

    Article  CAS  Google Scholar 

  31. Das, R., Laederach, A., Pearlman, S.M., Herschlag, D. & Altman, R.B. SAFA: Semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA 11, 344–354 (2005).

    Article  CAS  Google Scholar 

  32. Murphy, F.L. & Cech, T.R. GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. J. Mol. Biol. 236, 49–63 (1994).

    Article  CAS  Google Scholar 

  33. Cate, J.H. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678–1685 (1996).

    Article  CAS  Google Scholar 

  34. Culver, G.M. & Noller, H.F. Directed hydroxyl radical probing of RNA from iron(II) tethered to proteins in ribonucleoprotein complexes. Methods Enzymol. 318, 461–475 (2000).

    Article  CAS  Google Scholar 

  35. Ryder, S.P., Ortoleva-Donnelly, L., Kosek, A.B. & Strobel, S.A. Chemical probing of RNA by nucleotide analog interference mapping. Methods Enzymol. 317, 92–109 (2000).

    Article  CAS  Google Scholar 

  36. Weeks, K.M. & Crothers, D.M. Major groove accessibility of RNA. Science 261, 1574–1577 (1993).

    Article  CAS  Google Scholar 

  37. Draper, D.E. Themes in RNA-protein recognition. J. Mol. Biol. 293, 255–270 (1999).

    Article  CAS  Google Scholar 

  38. Huang, D.B. et al. Crystal structure of NF-κB (p50)2 complexed to a high-affinity RNA aptamer. Proc. Natl. Acad. Sci. USA 100, 9268–9273 (2003).

    Article  CAS  Google Scholar 

  39. Nolte, R.T., Conlin, R.M., Harrison, S.C. & Brown, R.S. Differing roles for zinc fingers in DNA recognition: structure of a six-finger transcription factor IIIA complex. Proc. Natl. Acad. Sci. USA 95, 2938–2943 (1998).

    Article  CAS  Google Scholar 

  40. Lu, D., Searles, M.A. & Klug, A. Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition. Nature 426, 96–100 (2003).

    Article  CAS  Google Scholar 

  41. Downing, M.E., Brady, K.L. & Caprara, M.G. A C-terminal fragment of an intron-encoded maturase is sufficient for promoting group I intron splicing. RNA 11, 437–446 (2005).

    Article  CAS  Google Scholar 

  42. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  43. Brunger, A.T. et al. Crystallography and NMR system (CNS): A new software system for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  44. Collaborative Computational Project. Number 4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  45. Ramakrishnan, V. & Biou, V. Treatment of multiwavelength anomalous diffraction data as a special case of multiple isomorphous replacement. Methods Enzymol. 276, 538–557 (1997).

    Article  CAS  Google Scholar 

  46. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and location of errors in these models. Acta Crystallogr. D Biol. Crystallogr. 47, 110–119 (1991).

    Article  Google Scholar 

  47. McRee, D.E. XtalView/Xfit - A versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  Google Scholar 

  48. Lovell, S.C. et al. Structure validation by C-alpha geometry: phi, psi, and C-beta deviation. Proteins 50, 437–450 (2003).

    Article  CAS  Google Scholar 

  49. Kleywegt, G.J. & Jones, T.A. Detecting folding motifs and similarities in protein structures. Methods Enzymol. 277, 525–545 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to L. Pedersen and Z. Dauter for assistance with synchrotron data collection at beamline X9B at Brookhaven National Laboratory, D. de Oliveira for performing DNA binding assays and our colleagues for critical comments on the manuscript. This work was supported by the US National Institutes of Health (NIH) grant GM56222 to K.M.W. and by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (T.M.T.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Traci M Tanaka Hall or Kevin M Weeks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

2′-O-methyl interference analysis of the bI3 maturase-RNA interaction. (PDF 150 kb)

Supplementary Fig. 2

bI3 maturase-facilitated splicing of the AnCOB group I intron RNA in the cytochrome b gene of Aspergillus nidulans. (PDF 172 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longo, A., Leonard, C., Bassi, G. et al. Evolution from DNA to RNA recognition by the bI3 LAGLIDADG maturase. Nat Struct Mol Biol 12, 779–787 (2005). https://doi.org/10.1038/nsmb976

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb976

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing