Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chromatin remodeling through directional DNA translocation from an internal nucleosomal site

Abstract

The RSC chromatin remodeler contains Sth1, an ATP-dependent DNA translocase. On DNA substrates, RSC/Sth1 tracks along one strand of the duplex with a 3′ → 5′ polarity and a tracking requirement of one base, properties that may enable directional DNA translocation on nucleosomes. The binding of RSC or Sth1 elicits a DNase I–hypersensitive site approximately two DNA turns from the nucleosomal dyad, and the binding of Sth1 requires intact DNA at this location. Results with various nucleosome substrates suggest that RSC/Sth1 remains at a fixed position on the histone octamer and that Sth1 conducts directional DNA translocation from a location about two turns from the nucleosomal dyad, drawing in DNA from one side of the nucleosome and pumping it toward the other. These studies suggest that nucleosome mobilization involves directional DNA translocation initiating from a fixed internal site on the nucleosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RSC binds the nucleosome core and the Sth1 ATPase domain elicits a DNase I–hypersensitive site about two turns from the nucleosomal dyad.
Figure 2: Treatment of remodeled nucleosomes with restriction endonuclease leads to the release of the smaller cleaved fragment.
Figure 3: A DNA linker on one side of the nucleosome enables restriction enzyme access to sites on the opposite side of the dyad.
Figure 4: Small gaps present in one DNA strand on the nucleosome affect restriction enzyme accessibility in a position-dependent manner.
Figure 5: DNA gaps positioned two turns from the dyad affect binding by Sth1 and remodeling by RSC.
Figure 6: RSC is a 3′ → 5′ DNA translocase with a tracking requirement of one base.
Figure 7: Models for DNA translocation on nucleosomes.

Similar content being viewed by others

References

  1. Almer, A., Rudolph, H., Hinnen, A. & Horz, W. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 5, 2689–2696 (1986).

    Article  CAS  Google Scholar 

  2. Boeger, H., Griesenbeck, J., Strattan, J.S. & Kornberg, R.D. Nucleosomes unfold completely at a transcriptionally active promoter. Mol. Cell 11, 1587–1598 (2003).

    Article  CAS  Google Scholar 

  3. Phelan, M.L., Sif, S., Narlikar, G.J. & Kingston, R.E. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol. Cell 3, 247–253 (1999).

    Article  CAS  Google Scholar 

  4. Corona, D.F. et al. ISWI is an ATP-dependent nucleosome remodeling factor. Mol. Cell 3, 239–245 (1999).

    Article  CAS  Google Scholar 

  5. Tran, H.G., Steger, D.J., Iyer, V.R. & Johnson, A.D. The chromo domain protein chd1p from budding yeast is an ATP-dependent chromatin-modifying factor. EMBO J. 19, 2323–2331 (2000).

    Article  CAS  Google Scholar 

  6. Boyer, L.A. et al. Functional delineation of three groups of the ATP-dependent family of chromatin remodeling enzymes. J. Biol. Chem. 275, 18864–18870 (2000).

    Article  CAS  Google Scholar 

  7. Cairns, B.R. et al. RSC, an essential, abundant chromatin-remodeling complex. Cell 87, 1249–1260 (1996).

    Article  CAS  Google Scholar 

  8. Laurent, B.C., Yang, X. & Carlson, M. An essential Saccharomyces cerevisiae gene homologous to SNF2 encodes a helicase-related protein in a new family. Mol. Cell. Biol. 12, 1893–1902 (1992).

    Article  CAS  Google Scholar 

  9. Peterson, C.L., Zhao, Y. & Chait, B.T. Subunits of the yeast SWI/SNF complex are members of the actin-related protein (ARP) family. J. Biol. Chem. 273, 23641–23644 (1998).

    Article  CAS  Google Scholar 

  10. Wang, W. et al. Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev. 10, 2117–2130 (1996).

    Article  CAS  Google Scholar 

  11. Imbalzano, A.N., Kwon, H., Green, M.R. & Kingston, R.E. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370, 481–485 (1994).

    Article  CAS  Google Scholar 

  12. Saha, A., Wittmeyer, J. & Cairns, B.R. Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes Dev. 16, 2120–2134 (2002).

    Article  CAS  Google Scholar 

  13. Flaus, A. & Owen-Hughes, T. Mechanisms for nucleosome mobilization. Biopolymers 68, 563–578 (2003).

    Article  CAS  Google Scholar 

  14. Whitehouse, I., Stockdale, C., Flaus, A., Szczelkun, M.D. & Owen-Hughes, T. Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. Mol. Cell. Biol. 23, 1935–1945 (2003).

    Article  CAS  Google Scholar 

  15. Whitehouse, I. et al. Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature 400, 784–787 (1999).

    Article  CAS  Google Scholar 

  16. Langst, G., Bonte, E.J., Corona, D.F. & Becker, P.B. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97, 843–852 (1999).

    Article  CAS  Google Scholar 

  17. Hamiche, A., Sandaltzopoulos, R., Gdula, D.A. & Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell 97, 833–842 (1999).

    Article  CAS  Google Scholar 

  18. Fyodorov, D.V. & Kadonaga, J.T. Dynamics of ATP-dependent chromatin assembly by ACF. Nature 418, 897–900 (2002).

    Article  CAS  Google Scholar 

  19. Havas, K. et al. Generation of superhelical torsion by ATP-dependent chromatin remodeling activities. Cell 103, 1133–1142 (2000).

    Article  CAS  Google Scholar 

  20. Langst, G. & Becker, P.B. ISWI induces nucleosome sliding on nicked DNA. Mol. Cell 8, 1085–1092 (2001).

    Article  CAS  Google Scholar 

  21. Lorch, Y., Zhang, M. & Kornberg, R.D. RSC unravels the nucleosome. Mol. Cell 7, 89–95 (2001).

    Article  CAS  Google Scholar 

  22. Kassabov, S.R., Zhang, B., Persinger, J. & Bartholomew, B. SWI/SNF unwraps, slides, and rewraps the nucleosome. Mol. Cell 11, 391–403 (2003).

    Article  CAS  Google Scholar 

  23. Narlikar, G.J., Phelan, M.L. & Kingston, R.E. Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol. Cell 8, 1219–1230 (2001).

    Article  CAS  Google Scholar 

  24. Asturias, F.J., Chung, W.H., Kornberg, R.D. & Lorch, Y. Structural analysis of the RSC chromatin-remodeling complex. Proc. Natl. Acad. Sci. USA 99, 13477–13480 (2002).

    Article  CAS  Google Scholar 

  25. Leschziner, A.E., Lemon, B., Tjian, R. & Nogales, E. Structural studies of the human PBAF chromatin-remodeling complex. Structure (Camb.) 13, 267–275 (2005).

    Article  CAS  Google Scholar 

  26. Lowary, P.T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  Google Scholar 

  27. Polach, K.J. & Widom, J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254, 130–149 (1995).

    Article  CAS  Google Scholar 

  28. Anderson, J.D., Thastrom, A. & Widom, J. Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation. Mol. Cell. Biol. 22, 7147–7157 (2002).

    Article  CAS  Google Scholar 

  29. Lorch, Y., Cairns, B.R., Zhang, M. & Kornberg, R.D. Activated RSC–nucleosome complex and persistently altered form of the nucleosome. Cell 94, 29–34 (1998).

    Article  CAS  Google Scholar 

  30. Fan, H.Y., He, X., Kingston, R.E. & Narlikar, G.J. Distinct strategies to make nucleosomal DNA accessible. Mol. Cell 11, 1311–1322 (2003).

    Article  CAS  Google Scholar 

  31. Li, G. & Widom, J. Nucleosomes facilitate their own invasion. Nat. Struct. Mol. Biol. 11, 763–769 (2004).

    Article  CAS  Google Scholar 

  32. Jaskelioff, M., Van Komen, S., Krebs, J.E., Sung, P. & Peterson, C.L. Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. J. Biol. Chem. 278, 9212–9218 (2003).

    Article  CAS  Google Scholar 

  33. Schwanbeck, R., Xiao, H. & Wu, C. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J. Biol. Chem. 279, 39933–39941 (2004).

    Article  CAS  Google Scholar 

  34. Kagalwala, M.N., Glaus, B.J., Dang, W., Zofall, M. & Bartholomew, B. Topography of the ISW2–nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J. 23, 2092–2104 (2004).

    Article  CAS  Google Scholar 

  35. Flaus, A. & Owen-Hughes, T. Dynamic properties of nucleosomes during thermal and ATP-driven mobilization. Mol. Cell. Biol. 23, 7767–7779 (2003).

    Article  CAS  Google Scholar 

  36. Lorch, Y., Davis, B. & Kornberg, R.D. Chromatin remodeling by DNA bending, not twisting. Proc. Natl. Acad. Sci. USA 102, 1329–1332 (2005).

    Article  CAS  Google Scholar 

  37. Velankar, S.S., Soultanas, P., Dillingham, M.S., Subramanya, H.S. & Wigley, D.B. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97, 75–84 (1999).

    Article  CAS  Google Scholar 

  38. Soultanas, P., Dillingham, M.S., Wiley, P., Webb, M.R. & Wigley, D.B. Uncoupling DNA translocation and helicase activity in PcrA: direct evidence for an active mechanism. EMBO J. 19, 3799–3810 (2000).

    Article  CAS  Google Scholar 

  39. Durr, H., Korner, C., Muller, M., Hickmann, V. & Hopfner, K.P. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell 121, 363–373 (2005).

    Article  Google Scholar 

  40. Thoma, N.H. et al. Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54. Nat. Struct. Mol. Biol. 12, 350–356 (2005).

    Article  Google Scholar 

  41. Wittmeyer, J., Saha, A. & Cairns, B. DNA translocation and nucleosome remodeling assays by the RSC chromatin remodeling complex. Methods Enzymol. 377, 322–343 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Schackmann for oligonucleotide syntheses, B. Kingston and G. Narlikar for the TGT plasmids, D. Close and C. Hill for purification of the Sth1301–1097 derivative and both M. Gordon and T. Formosa for comments on the manuscript. This work was funded by the US National Institutes of Health grant GM60415 (to B.R.C. and a majority of the support for A.S.), a University of Utah Graduate Research Fellowship (to A.S.), the Huntsman Cancer Institute (to J.W. and grant CA24014 for the support of core facilities) and the Howard Hughes Medical Institute (to B.R.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley R Cairns.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

RSC binding to nucleosomes bearing linker of different lengths. (PDF 88 kb)

Supplementary Methods (PDF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, A., Wittmeyer, J. & Cairns, B. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat Struct Mol Biol 12, 747–755 (2005). https://doi.org/10.1038/nsmb973

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb973

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing