Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

(CAG)n-hairpin DNA binds to Msh2–Msh3 and changes properties of mismatch recognition

A Corrigendum to this article was published on 01 September 2005

Abstract

Cells have evolved sophisticated DNA repair systems to correct damaged DNA. However, the human DNA mismatch repair protein Msh2–Msh3 is involved in the process of trinucleotide (CNG) DNA expansion rather than repair. Using purified protein and synthetic DNA substrates, we show that Msh2–Msh3 binds to CAG-hairpin DNA, a prime candidate for an expansion intermediate. CAG-hairpin binding inhibits the ATPase activity of Msh2–Msh3 and alters both nucleotide (ADP and ATP) affinity and binding interfaces between protein and DNA. These changes in Msh2–Msh3 function depend on the presence of A·A mispaired bases in the stem of the hairpin and on the hairpin DNA structure per se. These studies identify critical functional defects in the Msh2–Msh3–CAG hairpin complex that could misdirect the DNA repair process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Msh2–Msh3 causes CAG expansion in a coding sequence.
Figure 2: Msh2–Msh3 binds to CAG-hairpin DNA with high affinity.
Figure 4: Binding of Msh2–Msh3 to CAG hairpins inhibits ATP hydrolysis.
Figure 3: Msh2–Msh3 binding to the CAG-hairpin is greater than 1:1.
Figure 5: Multiple A•A mismatches inhibit ATPase activity of Msh2–Msh3.
Figure 6: Relative affinity of Msh2–Msh3 for nucleotide is DNA dependent.
Figure 7: Msh2–Msh3 binds differently to DNA loops and hairpins.
Figure 8: Duplex length does not affect ATPase activity of Msh2–Msh3 when bound to hairpin DNA.
Figure 9: Uncoupling models for Msh2–Msh3 bound to CAG hairpins.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Alani, E. The Saccharomyces cerevisiae Msh2 and Msh6 proteins form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs. Mol. Cell. Biol. 16, 5604–5615 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Acharya, S. et al. hMSH2 forms specific mispair-binding complexes with hMsh3 and hMsh6. Proc. Natl. Acad. Sci. USA 93, 13629–13634 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blackwell, L.J., Bjornson, K.P. & Modrich, P. DNA dependent activation of the hMutSalpha ATPase. J. Biol. Chem. 273, 32049–32054 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Modrich, P. & LaHue, R.S. Mismatch repair in replication fidelity, genetic recombination and cancer biology. Annu. Rev. Biochem. 65, 101–113 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Genschel, J., Littman, S.J., Drummond, J.T. & Modrich, P. Isolation of MutSβ from human cells and comparison of the mismatch repair specificities of MutSβ and Mutsα. J. Biol. Chem. 273, 19895–19901 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Johnson, R.E., Kovvali, G.K., Prakash, L. & Prakash, S. Requirement of the yeast Msh3 and Msh6 genes for Msh2-dependent genomic stability. J. Biol. Chem. 271, 7285–7288 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Marsischky, G.T., Filosi, N., Kane, M.F. & Kolodner, R.D. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10, 407–420 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Palombo, F. et al. hMurSbeta, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA. Curr. Biol. 6, 1181–1184 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Gradia, S. et al. hMSH2–hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol. Cell 3, 255–261 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Wilson, T., Guerrette, S. & Fishel, R. Dissociation of mismatch recognition and ATPase activity by hMSH2–MSH3. J. Biol. Chem. 274, 21659–21664 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Allen, D.J. et al. MutS mediates heteroduplex loop formation by a translocation mechanism. EMBO J. 16, 4467–4476 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blackwell, L.J., Bjornson, K.P., Allen, D.J. & Modrich, P. Distinct MutS DNA-binding modes that are differentially modulated by ATP binding and hydrolysis. J. Biol. Chem. 276, 34339–34347 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Gradia, S., Acharya, S. & Fishel, R. The role of mismatched oligonucleotides in activating the hMSH2–MSH6 molecular switch. J. Biol. Chem. 275, 3922–3930 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Martik, D., Baitinger, C. & Modrich, P. Differential specificities and simultaneous occupancy of human MutSα nucleotide binding. J. Biol. Chem. 279, 28402–28410 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. van den Broek, W.J. et al. Somatic expansion behavior of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Hum. Mol. Genet. 11, 191–199 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Dufner, P., Marra, G., Raschle, M. & Jiricny, J. Mismatch recognition and DNA-dependent stimulation of the ATPase activity of hMutSα is abolished by a single mutation in the hMSH6 subunit. J. Biol. Chem. 275, 36550–36555 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Junop, M.S., Obmolova, G., Rausch, K., Hsieh, P. & Yang, W. Composite active site of an ABC ATPase: MutS uses ATP to verify mismatch recognition and authorize DNA repair. Mol. Cell 7, 1–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Drotschmann, K., Yang, W. & Kunkel, T.A. Evidence for sequential action of two ATPase active sites in yeast MSH2–MSH6. DNA Repair (Amst.) 1, 743–753 (2002).

    Article  CAS  Google Scholar 

  19. Lamers, M.H., Winterwerp, H.H. & Sixma, T.K. The alternating ATPase domains of MutS control DNA mismatch repair. EMBO J. 22, 746–756 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baitinger, C., Burdett, V. & Modrich, P. Hydrolytically deficient MutS E694A is defective in the MutL-dependent activation of MutH and in the mismatch-dependent assembly of the MutS.MutL.heteroduplex complex. J. Biol. Chem. 278, 49505–49511 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Selmane, T., Schofield, M.J., Nayak, S., Du, C. & Hsieh, P. Formation of a DNA mismatch repair complex mediated by ATP. J. Mol. Biol. 334, 949–965 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Bjornson, K.P. & Modrich, P. Differential and simultaneous adenosine di- and triphosphate binding by MutS. J. Biol. Chem. 278, 18557–18562 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Cummings, C.J. & Zoghbi, H.Y. Fourteen and counting; unraveling trinucleotide repeat diseases. Hum. Mol. Genet. 9, 909–916 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Lahue, R.S. & Slater, D.L. DNA repair and trinucleotide repeat instability. Front. Biosci. 8, s653–s666 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. McMurray, C.T. DNA secondary structure: A common and causative factor for expansion in human disease. Proc. Natl. Acad. Sci. USA 96, 1823–1825 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Manley, K., Shirley, T.L., Flaherty, L. & Messer, A. MSH2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nat. Genet. 23, 471–473 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Kovtun, I.V. & McMurray, C.T. Trinucleotide expansion in haploid germ cells by gap repair. Nat. Genet. 27, 407–411 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Seznec, H. et al. Transgenic mice carrying large human genomic sequences with expanded CTG repeat mimic closely the DM CTG repeat intergenerational and somatic instability. Hum. Mol. Genet. 9, 1185–1194 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Iyer, R.R. & Wells, R.D. Expansion and deletion of triplet repeat sequences in Escherichia coli occur on the leading strand of DNA replication. J. Biol. Chem. 274, 3865–3877 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Kang, S., Jaworski, A., Ohshima, K. & Wells, R.D. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nat. Genet. 10, 213–218 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Miret, J.J., Pessoa-Brandao, L. & Lahue, R.S. Orientation-dependent and sequence-specific expansion of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 95, 12438–12443 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gacy, A.M., Goellner, G., Juranic, N., Macura, S. & McMurray, C.T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81, 533–540 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Freudenreich, C.H., Kantrow, S.M. & Zakian, V.A. Expansion and length- dependent fragility of CTG repeats in yeast. Science 279, 853–856 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Fortune, M.T., Vassilopoulos, C., Coolbaugh, M.I., Siciliano, M.J. & Monckton, D.G. Dramatic, expansion-biased, age-dependent, tissue-specific somatic mosaicism in a transgenic mouse model of triplet instability. Hum. Mol. Genet. 9, 439–445 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Chong, S.S. et al. Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease: evidence from single sperm analysis. Hum. Mol. Genet. 6, 301–309 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Freudenreich, C.H., Stavenhagen, J.B. & Zakian, V.A. Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol. Cell. Biol. 17, 2090–2097 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miret, J.J., Pessoa-Brandão, L. & Lahue, R.S. Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevesiae. Mol. Cell. Biol. 17, 3382–3387 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moore, H., Greewell, P.W., Liu, C.-P., Arnheim, N. & Petes, T.D. Triplet repeats form secondary structures that escape DNA repair in yeast. Proc. Natl. Acad. Sci. USA 96, 1504–1509 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pearson, C.E., Ewel, A., Acharya, S., Fishel, R.A. & Sinden, R.R. Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases. Hum. Mol. Genet. 6, 1117–1123 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Gacy, A.M. & McMurray, C.T. Influence of hairpins on template reannealing at trinucleotide repeat duplexes: a model for slipped DNA. Biochemistry 37, 9426–9434 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Acharya, S., Foster, P.L., Brooks, P. & Fishel, R. The coordinated functions of the E. coli MutS and MutL proteins in mismatch repair. Mol. Cell 12, 233–246 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Dzantiev, L. et al. A defined human system that supports bidirectional mismatch-provoked excision. Mol. Cell 15, 31–41 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goellner, G.M. et al. Different mechanisms underlie DNA instability in Huntington disease and colorectal cancer. Am. J. Hum. Genet. 60, 879–890 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Muller, A. & Fishel, R. Mismatch repair and the hereditary non-polyposis colorectal cancer syndrome (HNPCC). Cancer Invest. 20, 102–109 (2002).

    Article  PubMed  Google Scholar 

  46. Peltomaki, P. Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum. Mol. Genet. 10, 735–740 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Owen, B.A.L., Sullivan, W.P., Felts, S.J. & Toft, D.O. Regulation of heat shock protein 90 ATPase activity by sequences in the carboxyl terminus. J. Biol. Chem. 277, 7086–7091 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.P. Carney for discussions and D.O. Toft for critical reading of the manuscript. This work was funded by the US National Institutes of Health. This work was funded by NIH GM-066359 and NINDS-R01NS40738 (C.T.M.); NIH CA-0955690 (T.M.W.); NIH-GM52426 (J.J.H.); and NIH-CA84301 and NIH-ES11040 (R.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia T McMurray.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

CAG-hairpin binding changes stoichiometry, not composition, of protein/DNA complexes. (PDF 98 kb)

Supplementary Methods (PDF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owen, B., Yang, Z., Lai, M. et al. (CAG)n-hairpin DNA binds to Msh2–Msh3 and changes properties of mismatch recognition. Nat Struct Mol Biol 12, 663–670 (2005). https://doi.org/10.1038/nsmb965

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb965

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing