Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Building specificity with nonspecific RNA-binding proteins

An Erratum to this article was published on 01 September 2005

Abstract

Specificity is key to biological regulation. Two families of RNA binding proteins, heterogeneous nuclear ribonucleoproteins and serine-arginine–rich proteins, were initially thought to have redundant or nonspecific biochemical functions. Recently, members of these families have been found as components of distinct regulatory complexes with highly specific and essential roles in mRNA metabolism. Here we discuss the basis for their functional specificity and the mechanisms of action of some of their characteristic protein domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic nature of an mRNP during mRNA biogenesis.
Figure 2: Basis for the specificity of hnRNPs and SR proteins in alternative splicing.
Figure 3: Functions of the KH and RRM domains.
Figure 4: A model for the mechanism of action of the RS domain.

Similar content being viewed by others

References

  1. Reed, R. Coupling transcription, splicing and mRNA export. Curr. Opin. Cell Biol. 15, 326–331 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Hirose, Y. & Manley, J.L. RNA polymerase II and the integration of nuclear events. Genes Dev. 14, 1415–1429 (2000).

    CAS  PubMed  Google Scholar 

  3. Hastings, M.L. & Krainer, A.R. Pre-mRNA splicing in the new millennium. Curr. Opin. Cell Biol. 13, 302–309 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Nilsen, T.W. The spliceosome: no assembly required? Mol. Cell 9, 8–9 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Jurica, M.S. & Moore, M.J. Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell 12, 5–14 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Graveley, B.R. Alternative splicing: increasing diversity in the proteomic world. Trends Genet. 17, 100–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Maniatis, T. & Tasic, B. Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418, 236–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Black, D.L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Schmucker, D. et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671–684 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Johnson, J.M. et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302, 2141–2144 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Waterston, R.H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Burge, C.B., Tuschl, T. & Sharp, P.A. Splicing of precursors to mRNAs by the spliceosomes. The RNA World, 2nd edn. (eds. Gesteland, R.F., Cech, T.R. & Atkins, J.F.) 525–560 (Cold Spring Harbor Laboratory Press, New York, 1999).

    Google Scholar 

  13. Le Hir, H., Moore, M.J. & Maquat, L.E. Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions. Genes Dev. 14, 1098–1108 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dreyfuss, G., Kim, V.N. & Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell. Biol. 3, 195–205 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Kornblihtt, A.R., de la Mata, M., Fededa, J.P., Munoz, M.J. & Nogues, G. Multiple links between transcription and splicing. RNA 10, 1489–1498 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aguilera, A. Cotranscriptional mRNP assembly: from the DNA to the nuclear pore. Curr. Opin. Cell Biol. 17, 242–250 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Krecic, A.M. & Swanson, M.S. hnRNP complexes: composition, structure, and function. Curr. Opin. Cell Biol. 11, 363–371 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Caceres, J.F. & Kornblihtt, A.R. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet. 18, 186–193 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Gebauer, F. & Hentze, M.W. Molecular mechanisms of translational control. Nat. Rev. Mol. Cell. Biol. 5, 827–835 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meyer, S., Temme, C. & Wahle, E. Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit. Rev. Biochem. Mol. Biol. 39, 197–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Castelo-Branco, P. et al. Polypyrimidine tract binding protein modulates efficiency of polyadenylation. Mol. Cell. Biol. 24, 4174–4183 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Orphanides, G. & Reinberg, D. A unified theory of gene expression. Cell 108, 439–451 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Zahler, A.M., Lane, W.S., Stolk, J.A. & Roth, M.B. SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev. 6, 837–847 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Tacke, R. & Manley, J.L. Determinants of SR protein specificity. Curr. Opin. Cell. Biol. 11, 358–362 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Graveley, B.R. Sorting out the complexity of SR protein functions. RNA 6, 1197–1211 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fu, X.D. The superfamily of arginine/serine-rich splicing factors. RNA 1, 663–680 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shin, C. & Manley, J.L. Cell signalling and the control of pre-mRNA splicing. Nat. Rev. Mol. Cell. Biol. 5, 727–738 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Cartegni, L., Chew, S.L. & Krainer, A.R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat. Rev. Genet. 3, 285–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Longman, D., Johnstone, I.L. & Caceres, J.F. Functional characterization of SR and SR-related genes in Caenorhabditis elegans. EMBO J. 19, 1625–1637 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, J., Takagaki, Y. & Manley, J.L. Targeted disruption of an essential vertebrate gene: ASF/SF2 is required for cell viability. Genes Dev. 10, 2588–2599 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Xu, X. et al. ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell 120, 59–72 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Singh, R., Valcarcel, J. & Green, M.R. Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 268, 1173–1176 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Heinrichs, V., Ryner, L.C. & Baker, B.S. Regulation of sex-specific selection of fruitless 5′ splice sites by transformer and transformer-2. Mol. Cell. Biol. 18, 450–458 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lynch, K.W. & Maniatis, T. Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer. Genes Dev. 10, 2089–2101 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Forch, P. & Valcarcel, J. Splicing regulation in Drosophila sex determination. Prog. Mol. Subcell. Biol. 31, 127–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Schutt, C. & Nothiger, R. Structure, function and evolution of sex-determining systems in Dipteran insects. Development 127, 667–677 (2000).

    CAS  PubMed  Google Scholar 

  37. Labourier, E., Blanchette, M., Feiger, J.W., Adams, M.D. & Rio, D.C. The KH-type RNA-binding protein PSI is required for Drosophila viability, male fertility, and cellular mRNA processing. Genes Dev. 16, 72–84 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Siebel, C.W., Admon, A. & Rio, D.C. Soma-specific expression and cloning of PSI, a negative regulator of P element pre-mRNA splicing. Genes Dev. 9, 269–283 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Robida, M.D. & Singh, R. Drosophila polypyrimidine-tract binding protein (PTB) functions specifically in the male germline. EMBO J. 22, 2924–2933 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Westerveld, G.H. et al. Heterogeneous nuclear ribonucleoprotein G-T (HNRNP G-T) mutations in men with impaired spermatogenesis. Mol. Hum. Reprod. 10, 265–269 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Wagner, E.J. & Garcia-Blanco, M.A. Polypyrimidine tract binding protein antagonizes exon definition. Mol. Cell. Biol. 21, 3281–3288 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chou, M.Y., Underwood, J.G., Nikolic, J., Luu, M.H. & Black, D.L. Multisite RNA binding and release of polypyrimidine tract binding protein during the regulation of c-src neural-specific splicing. Mol. Cell 5, 949–957 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Smith, C.W. & Valcarcel, J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci. 25, 381–388 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Hanamura, A., Caceres, J.F., Mayeda, A., Franza, B.R., Jr. & Krainer, A.R. Regulated tissue-specific expression of antagonistic pre-mRNA splicing factors. RNA 4, 430–444 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zahler, A.M., Neugebauer, K.M., Lane, W.S. & Roth, M.B. Distinct functions of SR proteins in alternative pre-mRNA splicing. Science 260, 219–222 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, L., Liu, W. & Grabowski, P.J. Coordinate repression of a trio of neuron-specific splicing events by the splicing regulator PTB. RNA 5, 117–130 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Caceres, J.F., Screaton, G.R. & Krainer, A.R. A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes Dev. 12, 55–66 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xie, J., Lee, J.A., Kress, T.L., Mowry, K.L. & Black, D.L. Protein kinase A phosphorylation modulates transport of the polypyrimidine tract-binding protein. Proc. Natl. Acad. Sci. USA 100, 8776–8781 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hou, V.C. et al. Decrease in hnRNP A/B expression during erythropoiesis mediates a pre-mRNA splicing switch. EMBO J. 21, 6195–6204 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van der Houven van Oordt, W. et al. The MKK(3/6)-p38-signaling cascade alters the subcellular distribution of hnRNP A1 and modulates alternative splicing regulation. J. Cell. Biol. 149, 307–316 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cartegni, L. & Krainer, A.R. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat. Genet. 30, 377–384 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Kashima, T. & Manley, J.L. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat. Genet. 34, 460–463 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Caputi, M. & Zahler, A.M. SR proteins and hnRNP H regulate the splicing of the HIV-1 tev-specific exon 6D. EMBO J. 21, 845–855 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zahler, A.M., Damgaard, C.K., Kjems, J. & Caputi, M. SC35 and heterogeneous nuclear ribonucleoprotein A/B proteins bind to a juxtaposed exonic splicing enhancer/exonic splicing silencer element to regulate HIV-1 tat exon 2 splicing. J. Biol. Chem. 279, 10077–10084 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Fu, X.D. Specific commitment of different pre-mRNAs to splicing by single SR proteins. Nature 365, 82–85 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Mayeda, A., Screaton, G.R., Chandler, S.D., Fu, X.D. & Krainer, A.R. Substrate specificities of SR proteins in constitutive splicing are determined by their RNA recognition motifs and composite pre-mRNA exonic elements. Mol. Cell. Biol. 19, 1853–1863 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sakamoto, H., Inoue, K., Higuchi, I., Ono, Y. & Shimura, Y. Control of Drosophila Sex-lethal pre-mRNA splicing by its own female- specific product. Nucleic Acids Res. 20, 5533–5540 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gooding, C., Roberts, G.C., Moreau, G., Nadal-Ginard, B. & Smith, C.W. Smooth muscle-specific switching of alpha-tropomyosin mutually exclusive exon selection by specific inhibition of the strong default exon. EMBO J. 13, 3861–3872 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nasim, F.U., Hutchison, S., Cordeau, M. & Chabot, B. High-affinity hnRNP A1 binding sites and duplex-forming inverted repeats have similar effects on 5′ splice site selection in support of a common looping out and repression mechanism. RNA 8, 1078–1089 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mayeda, A. & Krainer, A.R. Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 68, 365–375 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Eperon, I.C. et al. Selection of alternative 5′ splice sites: role of U1 snRNP and models for the antagonistic effects of SF2/ASF and hnRNP A1. Mol. Cell. Biol. 20, 8303–8318 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Caceres, J.F., Stamm, S., Helfman, D.M. & Krainer, A.R. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 265, 1706–1709 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Tange, T.O., Damgaard, C.K., Guth, S., Valcarcel, J. & Kjems, J. The hnRNP A1 protein regulates HIV-1 tat splicing via a novel intron silencer element. EMBO J. 20, 5748–5758 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kan, J.L. & Green, M.R. Pre-mRNA splicing of IgM exons M1 and M2 is directed by a juxtaposed splicing enhancer and inhibitor. Genes Dev. 13, 462–471 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhu, J., Mayeda, A. & Krainer, A.R. Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Mol. Cell 8, 1351–1361 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Damgaard, C.K., Tange, T.O. & Kjems, J. hnRNP A1 controls HIV-1 mRNA splicing through cooperative binding to intron and exon splicing silencers in the context of a conserved secondary structure. RNA 8, 1401–1415 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xie, J. & Black, D.L. A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels. Nature 410, 936–939 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Shin, C. & Manley, J.L. The SR protein SRp38 represses splicing in M phase cells. Cell 111, 407–417 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Shin, C., Feng, Y. & Manley, J.L. Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock. Nature 427, 553–558 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Matter, N., Herrlich, P. & Konig, H. Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420, 691–695 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Braddock, D.T., Louis, J.M., Baber, J.L., Levens, D. & Clore, G.M. Structure and dynamics of KH domains from FBP bound to single-stranded DNA. Nature 415, 1051–1056 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Braddock, D.T., Baber, J.L., Levens, D. & Clore, G.M. Molecular basis of sequence-specific single-stranded DNA recognition by KH domains: solution structure of a complex between hnRNP K KH3 and single-stranded DNA. EMBO J. 21, 3476–3485 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lewis, H.A. et al. Sequence-specific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome. Cell 100, 323–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Perez-Canadillas, J.M. & Varani, G. Recent advances in RNA-protein recognition. Curr. Opin. Struct. Biol. 11, 53–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Banerjee, H., Rahn, A., Davis, W. & Singh, R. Sex lethal and U2 small nuclear ribonucleoprotein auxiliary factor (U2AF(65)) recognize polypyrimidine tracts using multiple modes of binding. RNA 9, 88–99 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ding, J. et al. Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA. Genes Dev. 13, 1102–1115 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Handa, N. et al. Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature 398, 579–585 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Lau, C.K., Diem, M.D., Dreyfuss, G. & Van Duyne, G.D. Structure of the Y14-Magoh core of the exon junction complex. Curr. Biol. 13, 933–941 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Fribourg, S., Gatfield, D., Izaurralde, E. & Conti, E. A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat. Struct. Biol. 10, 433–439 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Shi, H. & Xu, R.M. Crystal structure of the Drosophila Mago nashi-Y14 complex. Genes Dev. 17, 971–976 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kadlec, J., Izaurralde, E. & Cusack, S. The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3. Nat. Struct. Mol. Biol. 11, 330–337 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Selenko, P. et al. Structural basis for the molecular recognition between human splicing factors U2AF65 and SF1/mBBP. Mol. Cell 11, 965–976 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Kielkopf, C.L., Rodionova, N.A., Green, M.R. & Burley, S.K. A novel peptide recognition mode revealed by the X-ray structure of a core U2AF35/U2AF65 heterodimer. Cell 106, 595–605 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Mazza, C., Ohno, M., Segref, A., Mattaj, I.W. & Cusack, S. Crystal structure of the human nuclear cap binding complex. Mol. Cell 8, 383–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Price, S.R., Evans, P.R. & Nagai, K. Crystal structure of the spliceosomal U2B"-U2A' protein complex bound to a fragment of U2 small nuclear RNA. Nature 394, 645–650 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Kielkopf, C.L., Lucke, S. & Green, M.R. U2AF homology motifs: protein recognition in the RRM world. Genes Dev. 18, 1513–1526 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Moore, M.J. Intron recognition comes of AGe. Nat. Struct. Biol. 7, 14–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Huang, Y., Yario, T.A. & Steitz, J.A. A molecular link between SR protein dephosphorylation and mRNA export. Proc. Natl. Acad. Sci. USA 101, 9666–9670 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cazalla, D. et al. Nuclear export and retention signals in the RS domain of SR proteins. Mol. Cell. Biol. 22, 6871–6882 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Valcarcel, J., Gaur, R.K., Singh, R. & Green, M.R. Interaction of U2AF65 RS region with pre-mRNA branch point and promotion of base pairing with U2 snRNA. Science 273, 1706–1709 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Wang, J., Xiao, S.H. & Manley, J.L. Genetic analysis of the SR protein ASF/SF2: interchangeability of RS domains and negative control of splicing. Genes Dev. 12, 2222–2233 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Graveley, B.R., Hertel, K.J. & Maniatis, T. A systematic analysis of the factors that determine the strength of pre-mRNA splicing enhancers. EMBO J. 17, 6747–6756 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dauwalder, B. & Mattox, W. Analysis of the functional specificity of RS domains in vivo. EMBO J. 17, 6049–6060 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhu, J. & Krainer, A.R. Pre-mRNA splicing in the absence of an SR protein RS domain. Genes Dev. 14, 3166–3178 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kohtz, J.D. et al. Protein-protein interactions and 5′-splice-site recognition in mammalian mRNA precursors. Nature 368, 119–124 (1994).

    Article  CAS  PubMed  Google Scholar 

  96. Wu, J.Y. & Maniatis, T. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75, 1061–1070 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Perutz, M. Polar zippers: their role in human disease. Protein Sci. 3, 1629–1637 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Blencowe, B.J. Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem. Sci. 25, 106–110 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Shen, H., Kan, J.L. & Green, M.R. Arginine-serine-rich domains bound at splicing enhancers contact the branchpoint to promote prespliceosome assembly. Mol. Cell 13, 367–376 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Shen, H. & Green, M.R. A pathway of sequential arginine-serine-rich domain-splicing signal interactions during mammalian spliceosome assembly. Mol. Cell 16, 363–373 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Lee, C.G., Zamore, P.D., Green, M.R. & Hurwitz, J. RNA annealing activity is intrinsically associated with U2AF. J. Biol. Chem. 268, 13472–13478 (1993).

    CAS  PubMed  Google Scholar 

  102. Kent, O.A., Reayi, A., Foong, L., Chilibeck, K.A. & MacMillan, A.M. Structuring of the 3′ splice site by U2AF65. J. Biol. Chem. 278, 50572–50577 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Soret, J. & Tazi, J. Phosphorylation-dependent control of the pre-mRNA splicing machinery. Prog. Mol. Subcell. Biol. 31, 89–126 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Tacke, R., Chen, Y. & Manley, J.L. Sequence-specific RNA binding by an SR protein requires RS domain phosphorylation: creation of an SRp40-specific splicing enhancer. Proc. Natl. Acad. Sci. USA 94, 1148–1153 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xiao, S.H. & Manley, J.L. Phosphorylation-dephosphorylation differentially affects activities of splicing factor ASF/SF2. EMBO J. 17, 6359–6367 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xiao, S.H. & Manley, J.L. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 11, 334–344 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Valcarcel, J. & Green, M.R. The SR protein family: pleiotropic functions in pre-mRNA splicing. Trends Biochem. Sci. 21, 296–301 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Masuyama, K., Taniguchi, I., Kataoka, N. & Ohno, M. SR proteins preferentially associate with mRNAs in the nucleus and facilitate their export to the cytoplasm. Genes Cells 9, 959–965 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Huang, Y., Gattoni, R., Stevenin, J. & Steitz, J.A. SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol. Cell 11, 837–843 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, Z. & Krainer, A.R. Involvement of SR proteins in mRNA surveillance. Mol. Cell 16, 597–607 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Sanford, J.R., Gray, N.K., Beckmann, K. & Caceres, J.F. A novel role for shuttling SR proteins in mRNA translation. Genes Dev. 18, 755–768 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Staley, J.P. & Guthrie, C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Grishin, N.V. KH domain: one motif, two folds. Nucleic Acids Res. 29, 638–643 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Deka, P., Rajan, P.K., Perez-Canadillas, J.M. & Varani, G. Protein and RNA dynamics play key roles in determining the specific recognition of GU-rich polyadenylation regulatory elements by human Csrf-64 protein. J. Mol. Biol. 347, 719–733 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Wang, Z. et al. Systematic identification and analysis of exonic splicing silencers. Cell 119, 831–845 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Fairbrother, W.G., Yeh, R.F., Sharp, P.A. & Burge, C.B. Predictive identification of exonic splicing enhancers in human genes. Science 297, 1007–1013 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Coulter, L.R., Landree, M.A. & Cooper, T.A. Identification of a new class of exonic splicing enhancers by in vivo selection. Mol. Cell. Biol. 17, 2143–2150 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Karimpour for help with figures and literature search and J. Lykke-Andersen, T. Blumenthal, G. Das, F. Gebauer, B. Graveley, M. Green, R. Knight, A. Krainer, J. Manley, M. Sattler, C. Smith and members of our laboratories for insightful comments on the manuscript. We have cited recent references and reviews as extensive sources for original references; we apologize to our colleagues whose contributions could not be cited because of space constraints. This work was supported in part by grants from the US National Institutes of Health and the American Cancer Society to R.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravinder Singh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R., Valcárcel, J. Building specificity with nonspecific RNA-binding proteins. Nat Struct Mol Biol 12, 645–653 (2005). https://doi.org/10.1038/nsmb961

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb961

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing