Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autoinhibition of X11/Mint scaffold proteins revealed by the closed conformation of the PDZ tandem

Abstract

Members of the X11/Mint family of multidomain adaptor proteins are composed of a divergent N terminus, a conserved PTB domain and a pair of C-terminal PDZ domains. Many proteins can interact with the PDZ tandem of X11 proteins, although the mechanism of such interactions is unclear. Here we show that the highly conserved C-terminal tail of X11α folds back and inserts into the target-binding groove of the first PDZ domain. The binding of this tail occludes the binding of other target peptides. This autoinhibited conformation of X11 requires that the two PDZ domains and the entire C-terminal tail be covalently connected to form an integral structural unit. The autoinhibited conformation of the X11 PDZ tandem provides a mechanistic explanation for the unique target-binding properties of the protein and hints at potential regulatory mechanisms for the X11–target interactions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The C-terminal tail of X11α directly interacts with the PDZ tandem.
Figure 2: The C-terminal tail of X11α folds back to PDZ1 to form an autoinhibited conformation.
Figure 3: Structures of the X11α PDZ domains determined by NMR spectroscopy.
Figure 4: The autoinhibited conformation of PDZ12C might be regulated.
Figure 5: Supramodular structural model of the autoinhibited conformation of X11α PDZ12C.
Figure 6: Correlation of the autoinhibited conformation of X11α with the target-binding property of the protein.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Duclos, F. et al. Gene in the region of the Friedreich ataxia locus encodes a putative transmembrane protein expressed in the nervous system. Proc. Natl. Acad. Sci. USA 90, 109–113 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Okamoto, M. & Sudhof, T.C. Mints, Munc18-interacting proteins in synaptic vesicle exocytosis. J. Biol. Chem. 272, 31459–31464 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Borg, J.P., Yang, Y., De Taddeo-Borg, M., Margolis, B. & Turner, R.S. The X11α protein slows cellular amyloid precursor protein processing and reduces Aβ40 and Aβ42 secretion. J. Biol. Chem. 273, 14761–14766 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. McLoughlin, D.M., Irving, N.G. & Miller, C.C. The Fe65 and X11 families of proteins: proteins that interact with the Alzheimer's disease amyloid precursor protein. Biochem. Soc. Trans. 26, 497–500 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Biederer, T. & Sudhof, T.C. Mints as adaptors. Direct binding to neurexins and recruitment of munc18. J. Biol. Chem. 275, 39803–39806 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. McLoughlin, D.M. et al. Mint2/X11-like colocalizes with the Alzheimer's disease amyloid precursor protein and is associated with neuritic plaques in Alzheimer's disease. Eur. J. Neurosci. 11, 1988–1994 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Okamoto, M. & Sudhof, T.C. Mint 3: a ubiquitous mint isoform that does not bind to munc18–1 or -2. Eur. J. Cell Biol. 77, 161–165 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Borg, J.P. et al. Molecular analysis of the X11-mLin-2/CASK complex in brain. J. Neurosci. 19, 1307–1316 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tomita, S. et al. Interaction of a neuron-specific protein containing PDZ domains with Alzheimer's amyloid precursor protein. J. Biol. Chem. 274, 2243–2254 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Borg, J.P., Ooi, J., Levy, E. & Margolis, B. The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol. Cell. Biol. 16, 6229–6241 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McLoughlin, D.M. & Miller, C.C. The intracellular cytoplasmic domain of the Alzheimer's disease amyloid precursor protein interacts with phosphotyrosine-binding domain proteins in the yeast two-hybrid system. FEBS Lett. 397, 197–200 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, Z. et al. Sequence-specific recognition of the internalization motif of the Alzheimer's amyloid precursor protein by the X11 PTB domain. EMBO J. 16, 6141–6150 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Biederer, T., Cao, X., Sudhof, T.C. & Liu, X. Regulation of APP-dependent transcription complexes by Mint/X11s: differential functions of Mint isoforms. J. Neurosci. 22, 7340–7351 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lau, K.F., McLoughlin, D.M., Standen, C. & Miller, C.C. X11α and x11β interact with presenilin-1 via their PDZ domains. Mol. Cell. Neurosci. 16, 557–565 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Maximov, A., Sudhof, T.C. & Bezprozvanny, I. Association of neuronal calcium channels with modular adaptor proteins. J. Biol. Chem. 274, 24453–24456 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Stricker, N.L. & Huganir, R.L. The PDZ domains of mLin-10 regulate its trans-Golgi network targeting and the surface expression of AMPA receptors. Neuropharmacology 45, 837–848 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Mueller, H.T., Borg, J.P., Margolis, B. & Turner, R.S. Modulation of amyloid precursor protein metabolism by X11α/Mint-1. A deletion analysis of protein-protein interaction domains. J. Biol. Chem. 275, 39302–39306 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Kaech, S.M., Whitfield, C.W. & Kim, S.K. The LIN-2/LIN-7/LIN-10 complex mediates basolateral membrane localization of the C. elegans EGF receptor LET-23 in vulval epithelial cells. Cell 94, 761–771 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rongo, C., Whitfield, C.W., Rodal, A., Kim, S.K. & Kaplan, J.M. LIN-10 is a shared component of the polarized protein localization pathways in neurons and epithelia. Cell 94, 751–759 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Whitfield, C.W., Benard, C., Barnes, T., Hekimi, S. & Kim, S.K. Basolateral localization of the Caenorhabditis elegans epidermal growth factor receptor in epithelial cells by the PDZ protein LIN-10. Mol. Biol. Cell 10, 2087–2100 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Butz, S., Okamoto, M. & Sudhof, T.C. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 94, 773–782 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Setou, M., Nakagawa, T., Seog, D.H. & Hirokawa, N. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796–1802 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Guillaud, L., Setou, M. & Hirokawa, N. KIF17 dynamics and regulation of NR2B trafficking in hippocampal neurons. J. Neurosci. 23, 131–140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ho, A., Morishita, W., Hammer, R.E., Malenka, R.C. & Sudhof, T.C. A role for Mints in transmitter release: Mint 1 knockout mice exhibit impaired GABAergic synaptic transmission. Proc. Natl. Acad. Sci. USA 100, 1409–1414 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Songyang, Z. et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275, 73–77 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, M. & Wang, W. Organization of signaling complexes by PDZ-domain scaffold proteins. Acc. Chem. Res. 36, 530–538 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Sheng, M. & Sala, C. Pdz domains and the organization of supramolecular complexes. Annu. Rev. Neurosci. 24, 1–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Harris, B.Z. & Lim, W.A. Mechanism and role of PDZ domains in signaling complex assembly. J. Cell Sci. 114, 3219–3231 (2001).

    CAS  PubMed  Google Scholar 

  29. Birrane, G., Chung, J. & Ladias, J.A.A. Novel mode of ligand recognition by the erbin PDZ domain. J. Biol. Chem. 278, 1399–1402 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Kang, B.S. et al. PDZ tandem of human syntenin. Crystal structure and functional properties. Structure 11, 459–468 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Sollerbrant, K. et al. The Coxsackievirus and adenovirus receptor (CAR) forms a complex with the PDZ domain-containing protein ligand-of-numb protein-X (LNX). J. Biol. Chem. 278, 7439–7444 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Long, J.F. et al. Supramodular structure and synergistic target binding of the N-terminal tandem PDZ domains of PSD-95. J. Mol. Biol. 327, 203–214 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Feng, W., Shi, Y., Li, M. & Zhang, M. Tandem PDZ repeats in glutamate receptor-interacting proteins have a novel mode of PDZ domain-mediated target binding. Nat. Struct. Biol. 10, 972–978 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Zimmermann, P. et al. Characterization of syntenin, a syndecan-binding PDZ protein, as a component of cell adhesion sites and microfilaments. Mol. Biol. Cell 12, 339–350 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kang, B.S., Cooper, D.R., Devedjiev, Y., Derewenda, U. & Derewenda, Z.S. Molecular roots of degenerate specificity in syntenin's PDZ2 domain: reassessment of the PDZ recognition paradigm. Structure 11, 845–853 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Feng, W., Fan, J.S., Jiang, M., Shi, Y.W. & Zhang, M. PDZ7 of glutamate receptor interacting protein binds to its target via a novel hydrophobic surface area. J. Biol. Chem. 277, 41140–41146 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Bax, A. & Grzesiek, S. Methodological advances in protein NMR. Acc. Chem. Res. 26, 131–138 (1993).

    Article  CAS  Google Scholar 

  38. Kay, L.E. & Gardner, K.H. Solution NMR spectroscopy beyond 25 kDa. Curr. Opin. Struct. Biol. 7, 722–731 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Zwahlen, C. et al. Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: application to a bacteriophage N-peptide/boxB RNA complex. J. Am. Chem. Soc. 119, 6711–6721 (1997).

    Article  CAS  Google Scholar 

  40. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  45. Merritt, E. & Murphy, M. Raster3D version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 50, 869–873 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants CERG and AOE/B-15/01 from the University Grants Committee of Hong Kong to N.Y.I., J.X. and M.Z. The NMR spectrometer used in this work was purchased with funds donated to the Biotechnology Research Institute by the Hong Kong Jockey Club. M.Z. and N.Y.I. were recipients of the Croucher Foundation Senior Research Fellowship. We thank H. Zheng for the presenilin expression construct.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjie Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Comparisons of the conformation of various PDZ domains using the chemical shift perturbation approach. (PDF 83 kb)

Supplementary Fig. 2

Structures of the X11 PDZ domains determined by NMR spectroscopy. (PDF 716 kb)

Supplementary Fig. 3

Interaction of N-type calcium channel peptide with PDZ1. (PDF 181 kb)

Supplementary Table 1

Structural statistics for the family of 20 structures of PDZ1, PDZ1 in complex with the C-peptide, and PDZ2. (PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, JF., Feng, W., Wang, R. et al. Autoinhibition of X11/Mint scaffold proteins revealed by the closed conformation of the PDZ tandem. Nat Struct Mol Biol 12, 722–728 (2005). https://doi.org/10.1038/nsmb958

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb958

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing