Splicing regulates NAD metabolite binding to histone macroH2A

Abstract

Histone macroH2A is a hallmark of mammalian heterochromatin. Here we show that human macroH2A1.1 binds the SirT1-metabolite O-acetyl-ADP-ribose (OAADPR) through its macro domain. The 1.6-Å crystal structure and mutants reveal how the metabolite is recognized. Mutually exclusive exon use in the gene H2AFY produces macroH2A1.2, whose tissue distribution differs. MacroH2A1.2 shows only subtle structural changes but cannot bind nucleotides. Alternative splicing may thus regulate the binding of nicotinamide adenine dinucleotide (NAD) metabolites to chromatin.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The human heterochromatic histone mH2A1.1 binds NAD metabolites.
Figure 2: Alternative splicing regulates NAD metabolite binding to human histone macroH2A1 isoforms.

Accession codes

Accessions

BINDPlus

Protein Data Bank

References

  1. 1

    Pehrson, J.R. & Fried, V.A. Science 257, 1398–1400 (1992).

    CAS  Article  Google Scholar 

  2. 2

    Allen, M.D., Buckle, A.M., Cordell, S.C., Lowe, J. & Bycroft, M. J. Mol. Biol. 330, 503–511 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Ladurner, A.G. Mol. Cell 12, 1–3 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Costanzi, C. & Pehrson, J.R. Nature 393, 599–601 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Zhang, R. et al. Dev. Cell 8, 19–30 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Grigoryev, S.A., Nikitina, T., Pehrson, J.R., Singh, P.B. & Woodcock, C.L. J. Cell Sci. 117, 6153–6162 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Karras, G.I. et al. EMBO J. 24, 1911–1920 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Kim, M.Y., Mauro, S., Gevry, N., Lis, J.T. & Kraus, W.L. Cell 119, 803–814 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Rosenberg, M.I. & Parkhurst, S.M. Cell 109, 447–458 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Vaquero, A. et al. Mol. Cell 16, 93–105 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Smith, J.S. et al. Proc. Natl. Acad. Sci. USA 97, 6658–6663 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Landry, J. et al. Proc. Natl. Acad. Sci. USA 97, 5807–5811 (2000).

    CAS  Article  Google Scholar 

  13. 13

    Imai, S., Armstrong, C.M., Kaeberlein, M. & Guarente, L. Nature 403, 795–800 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Jackson, M.D. & Denu, J.M. J. Biol. Chem. 277, 18535–18544 (2002).

    CAS  Article  Google Scholar 

  15. 15

    Pehrson, J.R., Costanzi, C. & Dharia, C. J. Cell. Biochem. 65, 107–113 (1997).

    CAS  Article  Google Scholar 

  16. 16

    Bordone, L. & Guarente, L. Nat. Rev. Mol. Cell Biol. 6, 298–305 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Wilm for mass spectrometry; G. Karras, A. Bianco, G. Stier, H. Buhecha, M. Breitenbach and H. Koller for assorted help; S. Fribourg for beamline data collection; A. Akhtar, E. Conti, E. Izaurralde, C. Margulies, I. Mattaj, J. Müller and C. Schultz for discussion; and the staff at beamline ID14-1/ID14-4 of the ESRF for technical support. M.H. acknowledges financial support from the Peter and Traudl Engelhorn Foundation, Germany.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Klaus Scheffzek or Andreas G Ladurner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Schematic group II intron secondary structure. (PDF 460 kb)

Supplementary Fig. 2

The products of splicing from a D56 molecule containing a single-nucleotide 3′-exon. (PDF 445 kb)

Supplementary Table 1

Data collection and refinement statistics (Molecular Replacement). (PDF 75 kb)

Supplementary Methods (PDF 173 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kustatscher, G., Hothorn, M., Pugieux, C. et al. Splicing regulates NAD metabolite binding to histone macroH2A. Nat Struct Mol Biol 12, 624–625 (2005). https://doi.org/10.1038/nsmb956

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing