Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TFIIH XPB mutants suggest a unified bacterial-like mechanism for promoter opening but not escape

Abstract

DNA helicases open the duplex during DNA replication, repair and transcription. However, RNA polymerase II is the only member of its family with this requirement; RNA polymerases I and III and bacterial RNA polymerases open DNA without a helicase. In this report, characterization of XPB mutants indicates that its helicase activity is not used for RNA polymerase II promoter opening, which is instead driven by its ATPase activity. The mutants have parallels in σ54 bacterial transcription and this suggests a similar mode of opening DNA for both RNA polymerases, involving ATP-dependent enzyme conformational changes. Promoter escape is defective in these XPB mutants, suggesting that the XPB helicase acts as an ATP-driven motor to reorganize the tightly wrapped multiprotein eukaryotic preinitiation complex during the remodeling that precedes elongation and the coupling to RNA processing events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Helicase-defective mutants are severely deficient in transcription.
Figure 2: ATP-independent promoter opening of motif III and motif VI XPB mutants in extracts.
Figure 3: K354R, T478A and Q647A are defective in a 3′ → 5′ helicase activity assay.
Figure 4: T478A and Q647A are defective in promoter escape.
Figure 5: Helicase motif III and VI mutants can open the inv1 promoter in the absence of nucleotide but cannot clear from the promoter and enter elongation.

Similar content being viewed by others

References

  1. Egly, J.M. The 14th Datta Lecture. TFIIH: from transcription to clinic. FEBS Lett. 498, 124–128 (2001).

    Article  CAS  Google Scholar 

  2. Mendez, J. & Stillman, B. Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins. Bioessays 25, 1158–1167 (2003).

    Article  CAS  Google Scholar 

  3. Moreland, R.J. et al. A role for the TFIIH XPB DNA helicase in promoter escape by RNA polymerase II. J. Biol. Chem. 274, 22127–22130 (1999).

    Article  CAS  Google Scholar 

  4. Svejstrup, J.Q. The RNA polymerase II transcription cycle: cycling through chromatin. Biochim. Biophys. Acta 1677, 64–73 (2004).

    Article  CAS  Google Scholar 

  5. Evans, E., Moggs, J.G., Hwang, J.R., Egly, J.M. & Wood, R.D. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J. 16, 6559–6573 (1997).

    Article  CAS  Google Scholar 

  6. Guzman, E. & Lis, J.T. Transcription factor TFIIH is required for promoter melting in vivo. Mol. Cell. Biol. 19, 5652–5658 (1999).

    Article  CAS  Google Scholar 

  7. Tirode, F., Busso, D., Coin, F. & Egly, J.M. Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7. Mol. Cell 3, 87–95 (1999).

    Article  CAS  Google Scholar 

  8. Parvin, J.D. & Sharp, P.A. DNA topology and a minimal set of basal factors for transcription by RNA polymerase II. Cell 73, 533–540 (1993).

    Article  CAS  Google Scholar 

  9. Holstege, F.C., van der Vliet, P.C. & Timmers, H.T. Opening of an RNA polymerase II promoter occurs in two distinct steps and requires the basal transcription factors IIE and IIH. EMBO J. 15, 1666–1677 (1996).

    Article  CAS  Google Scholar 

  10. Drapkin, R. et al. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature 368, 769–772 (1994).

    Article  CAS  Google Scholar 

  11. Coin, F., Bergmann, E., Tremeau-Bravard, A. & Egly, J.M. Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. EMBO J. 18, 1357–1366 (1999).

    Article  CAS  Google Scholar 

  12. Kim, T.K., Ebright, R.H. & Reinberg, D. Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science 288, 1418–1422 (2000).

    Article  CAS  Google Scholar 

  13. Wang, J.T., Syed, A., Hsieh, M. & Gralla, J.D. Converting Escherichia coli RNA polymerase into an enhancer-responsive enzyme: role of an NH2-terminal leucine patch in sigma 54. Science 270, 992–994 (1995).

    Article  CAS  Google Scholar 

  14. Buck, M., Gallegos, M.T., Studholme, D.J., Guo, Y. & Gralla, J.D. The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. J. Bacteriol. 182, 4129–4136 (2000).

    Article  CAS  Google Scholar 

  15. Choi, W.S., Yan, M., Nusinow, D. & Gralla, J.D. In vitro transcription and start site selection in Schizosaccharomyces pombe. J. Mol. Biol. 319, 1005–1013 (2002).

    Article  CAS  Google Scholar 

  16. Choi, W.S., Lin, Y.C. & Gralla, J.D. The Schizosaccharomyces pombe open promoter bubble: mammalian-like arrangement and properties. J. Mol. Biol. 340, 981–989 (2004).

    Article  CAS  Google Scholar 

  17. Sasse-Dwight, S. & Gralla, J.D. KMnO4 as a probe for lac promoter DNA melting and mechanism in vivo. J. Biol. Chem. 264, 8074–8081 (1989).

    CAS  PubMed  Google Scholar 

  18. Wang, W., Carey, M. & Gralla, J.D. Polymerase II promoter activation: closed complex formation and ATP-driven start site opening. Science 255, 450–453 (1992).

    Article  CAS  Google Scholar 

  19. Samuels, M., Fire, A. & Sharp, P.A. Dinucleotide priming of transcription mediated by RNA polymerase II. J. Biol. Chem. 259, 2517–2525 (1984).

    CAS  PubMed  Google Scholar 

  20. Roy, R. et al. The DNA-dependent ATPase activity associated with the class II basic transcription factor BTF2/TFIIH. J. Biol. Chem. 269, 9826–9832 (1994).

    CAS  PubMed  Google Scholar 

  21. Weber, A., Liu, J., Collins, I. & Levens, D. TFIIH operates through an expanded proximal promoter to fine-tune c-myc expression. Mol. Cell. Biol. 25, 147–161 (2005).

    Article  CAS  Google Scholar 

  22. Iacovoni, J.S., Russell, P. & Gaits, F. A new inducible protein expression system in fission yeast based on the glucose-repressed inv1 promoter. Gene 232, 53–58 (1999).

    Article  CAS  Google Scholar 

  23. Orphanides, G. & Reinberg, D. A unified theory of gene expression. Cell 108, 439–451 (2002).

    Article  CAS  Google Scholar 

  24. Murakami, K.S., Masuda, S., Campbell, E.A., Muzzin, O. & Darst, S.A. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296, 1285–1290 (2002).

    Article  CAS  Google Scholar 

  25. Bushnell, D.A. & Kornberg, R.D. Complete, 12-subunit RNA polymerase II at 4.1-A resolution: implications for the initiation of transcription. Proc. Natl. Acad. Sci. USA 100, 6969–6973 (2003).

    Article  CAS  Google Scholar 

  26. Archambault, J. & Friesen, J.D. Genetics of eukaryotic RNA polymerases I, II, and III. Microbiol. Rev. 57, 703–724 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wedel, A. & Kustu, S. The bacterial enhancer-binding protein NTRC is a molecular machine: ATP hydrolysis is coupled to transcriptional activation. Genes Dev. 9, 2042–2052 (1995).

    Article  CAS  Google Scholar 

  28. Murakami, K.S. & Darst, S.A. Bacterial RNA polymerases: the wholo story. Curr. Opin. Struct. Biol. 13, 31–39 (2003).

    Article  CAS  Google Scholar 

  29. Mekler, V. et al. Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell 108, 599–614 (2002).

    Article  CAS  Google Scholar 

  30. Bushnell, D.A., Westover, K.D., Davis, R.E. & Kornberg, R.D. Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms. Science 303, 983–988 (2004).

    Article  CAS  Google Scholar 

  31. Chen, H.T. & Hahn, S. Binding of TFIIB to RNA polymerase II: Mapping the binding site for the TFIIB zinc ribbon domain within the preinitiation complex. Mol. Cell 12, 437–447 (2003).

    Article  CAS  Google Scholar 

  32. Carpousis, A.J. & Gralla, J.D. Cycling of ribonucleic acid polymerase to produce oligonucleotides during initiation in vitro at the lac UV5 promoter. Biochemistry 19, 3245–3253 (1980).

    Article  CAS  Google Scholar 

  33. Yudkovsky, N., Ranish, J.A. & Hahn, S. A transcription reinitiation intermediate that is stabilized by activator. Nature 408, 225–229 (2000).

    Article  CAS  Google Scholar 

  34. Buratowski, S. The CTD code. Nat. Struct. Biol. 10, 679–680 (2003).

    Article  CAS  Google Scholar 

  35. Spangler, L., Wang, X., Conaway, J.W., Conaway, R.C. & Dvir, A. TFIIH action in transcription initiation and promoter escape requires distinct regions of downstream promoter DNA. Proc. Natl. Acad. Sci. USA 98, 5544–5549 (2001).

    Article  CAS  Google Scholar 

  36. Forsburg, S.L. Comparison of Schizosaccharomyces pombe expression systems. Nucleic Acids Res. 21, 2955–2956 (1993).

    Article  CAS  Google Scholar 

  37. Liu, J. et al. The FBP interacting repressor targets TFIIH to inhibit activated transcription. Mol. Cell 5, 331–341 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Vargas for technical assistance and M.S. Fenton for discussions. The research was supported by grant GM49048 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay D Gralla.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Choi, W. & Gralla, J. TFIIH XPB mutants suggest a unified bacterial-like mechanism for promoter opening but not escape. Nat Struct Mol Biol 12, 603–607 (2005). https://doi.org/10.1038/nsmb949

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb949

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing