Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Versatile modes of peptide recognition by the AAA+ adaptor protein SspB

Abstract

Energy-dependent proteases often rely on adaptor proteins to modulate substrate recognition. The SspB adaptor binds peptide sequences in the stress-response regulator RseA and in ssrA-tagged proteins and delivers these molecules to the AAA+ ClpXP protease for degradation. The structure of SspB bound to an ssrA peptide is known. Here, we report the crystal structure of a complex between SspB and its recognition peptide in RseA. Notably, the RseA sequence is positioned in the peptide-binding groove of SspB in a direction opposite to the ssrA peptide, the two peptides share only one common interaction with the adaptor, and the RseA interaction site is substantially larger than the overlapping ssrA site. This marked diversity in SspB recognition of different target proteins indicates that it is capable of highly flexible and dynamic substrate delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of the RseA or ssrA peptides bound to the SspB adaptor.
Figure 2: SspB contacts with the RseA and ssrA peptides.
Figure 3: Peptide binding and mutagenesis confirms important contacts formed between SspB and RseA.
Figure 4: Different surfaces of SspB are probably used to deliver ssrA-tagged proteins and N-RseA(1–108) to ClpX.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Gottesman, S., Roche, E., Zhou, Y. & Sauer, R.T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12, 1338–1347 (1998).

    Article  CAS  Google Scholar 

  2. Wang, L., Elliott, M. & Elliott, T. Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium. J. Bacteriol. 181, 1211–1219 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Maurizi, M.R. & Rasulova, F. Degradation of L-glutamate dehydrogenase from Escherichia coli: allosteric regulation of enzyme stability. Arch. Biochem. Biophys. 397, 206–216 (2002).

    Article  CAS  Google Scholar 

  4. Flynn, J.M., Neher, S.B., Kim, Y.I., Sauer, R.T. & Baker, T.A. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 11, 671–683 (2003).

    Article  CAS  Google Scholar 

  5. Gottesman, S. Proteolysis in bacterial regulatory circuits. Annu. Rev. Cell. Dev. Biol. 19, 565–587 (2003).

    Article  CAS  Google Scholar 

  6. Flynn, J.M., Levchenko, I., Sauer, R.T. & Baker, T.A. Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev. 18, 2292–2301 (2004).

    Article  CAS  Google Scholar 

  7. Levchenko, I., Smith, C.K., Walsh, N.P., Sauer, R.T. & Baker, T.A. PDZ-like domains mediate binding specificity in the Clp/Hsp100 family of chaperones and protease regulatory subunits. Cell 91, 939–947 (1997).

    Article  CAS  Google Scholar 

  8. Gonciarz-Swiatek, M. et al. Recognition, targeting, and hydrolysis of the lambda O replication protein by the ClpP/ClpX protease. J. Biol. Chem. 274, 13999–14005 (1999).

    Article  CAS  Google Scholar 

  9. Dougan, D.A., Mogk, A., Zeth, K., Turgay, K. & Bukau, B. AAA+ proteins and substrate recognition, it all depends on their partner in crime. FEBS Lett. 529, 6–10 (2002).

    Article  CAS  Google Scholar 

  10. Maurizi, M.R. et al. Sequence and structure of Clp P, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli. J. Biol. Chem. 265, 12536–12545 (1990).

    CAS  PubMed  Google Scholar 

  11. Wojtkowiak, D., Georgopoulos, C. & Zylicz, M. Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease of Escherichia coli. J. Biol. Chem. 268, 22609–22617 (1993).

    CAS  PubMed  Google Scholar 

  12. Wang, J., Hartling, J.A. & Flanagan, J.M. The structure of ClpP at 2.3 Å resolution suggests a model for ATP-dependent proteolysis. Cell 91, 447–456 (1997).

    Article  CAS  Google Scholar 

  13. Kim, D.Y. & Kim, K.K. Crystal structure of ClpX molecular chaperone from Helicobacter pylori. J. Biol. Chem. 278, 50664–50670 (2003).

    Article  CAS  Google Scholar 

  14. Maurizi, M.R., Thompson, M.W., Singh, S.K. & Kim, S.H. Endopeptidase Clp: ATP-dependent Clp protease from Escherichia coli. Methods Enzymol. 244, 314–331 (1994).

    Article  CAS  Google Scholar 

  15. Weber-Ban, E.U., Reid, B.G., Miranker, A.D. & Horwich, A.L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401, 90–93 (1999).

    Article  CAS  Google Scholar 

  16. Kim, Y.I., Burton, R.E., Burton, B.M., Sauer, R.T. & Baker, T.A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5, 639–648 (2000).

    Article  CAS  Google Scholar 

  17. Kenniston, J.A., Baker, T.A., Fernandez, J.M. & Sauer, R.T. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell 114, 511–520 (2003).

    Article  CAS  Google Scholar 

  18. Levchenko, I., Seidel, M., Sauer, R.T. & Baker, T.A. A specificity-enhancing factor for the ClpXP degradation machine. Science 289, 2354–2356 (2000).

    Article  CAS  Google Scholar 

  19. Keiler, K.C., Waller, P.R. & Sauer, R.T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271, 990–993 (1996).

    Article  CAS  Google Scholar 

  20. Wah, D.A., Levchenko, I., Baker, T.A. & Sauer, R.T. Characterization of a specificity factor for an AAA+ ATPase: assembly of SspB dimers with ssrA-tagged proteins and the ClpX hexamer. Chem. Biol. 9, 1237–1245 (2002).

    Article  CAS  Google Scholar 

  21. Wah, D.A. et al. Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease. Mol. Cell 12, 355–363 (2003).

    Article  CAS  Google Scholar 

  22. Bolon, D.N., Wah, D.A., Hersch, G.L., Baker, T.A. & Sauer, R.T. Bivalent tethering of SspB to ClpXP is required for efficient substrate delivery: a protein-design study. Mol. Cell 13, 443–449 (2004).

    Article  CAS  Google Scholar 

  23. Levchenko, I., Grant, R.A., Wah, D.A., Sauer, R.T. & Baker, T.A. Structure of a delivery protein for an AAA+ protease in complex with a peptide degradation tag. Mol. Cell 12, 365–372 (2003).

    Article  CAS  Google Scholar 

  24. Song, H.K. & Eck, M.J. Structural basis of degradation signal recognition by SspB, a specificity-enhancing factor for the ClpXP proteolytic machine. Mol. Cell 12, 75–86 (2003).

    Article  CAS  Google Scholar 

  25. Flynn, J.M. et al. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc. Natl. Acad. Sci. USA 98, 10584–10589 (2001).

    Article  CAS  Google Scholar 

  26. Bolon, D.N., Grant, R.A., Baker, T.A. & Sauer, R.T. Nucleotide-dependent substrate handoff from the SspB adaptor to the AAA+ ClpXP protease. Mol. Cell 16, 343–350 (2004).

    Article  CAS  Google Scholar 

  27. De Las Penas, A., Connolly, L. & Gross, C.A. The σE-mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σE. Mol. Microbiol. 24, 373–385 (1997).

    Article  CAS  Google Scholar 

  28. Missiakas, D., Mayer, M.P., Lemaire, M., Georgopoulos, C. & Raina, S. Modulation of the Escherichia coli σE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol. Microbiol. 24, 355–371 (1997).

    Article  CAS  Google Scholar 

  29. Dartigalongue, C., Missiakas, D. & Raina, S. Characterization of the Escherichia coli σE regulon. J. Biol. Chem. 276, 20866–20875 (2001).

    Article  CAS  Google Scholar 

  30. Rezuchova, B., Miticka, H., Homerova, D., Roberts, M. & Kormanec, J. New members of the Escherichia coli σE regulon identified by a two-plasmid system. FEMS Microbiol. Lett. 225, 1–7 (2003).

    Article  CAS  Google Scholar 

  31. Alba, B.M., Zhong, H.J., Pelayo, J.C. & Gross, C.A. degS (hhoB) is an essential Escherichia coli gene whose indispensable function is to provide σ(E) activity. Mol. Microbiol. 40, 1323–1333 (2001).

    Article  CAS  Google Scholar 

  32. Alba, B.M., Leeds, J.A., Onufryk, C., Lu, C.Z. & Gross, C.A. DegS and YaeL participate sequentially in the cleavage of RseA to activate the σ(E)-dependent extracytoplasmic stress response. Genes Dev. 16, 2156–2168 (2002).

    Article  CAS  Google Scholar 

  33. Kanehara, K., Ito, K. & Akiyama, Y. YaeL (EcfE) activates the σ(E) pathway of stress response through a site-2 cleavage of anti-σ(E), RseA. Genes Dev. 16, 2147–2155 (2002).

    Article  CAS  Google Scholar 

  34. Campbell, E.A. et al. Crystal structure of Escherichia coli σE with the cytoplasmic domain of its anti-σ RseA. Mol. Cell 11, 1067–1078 (2003).

    Article  CAS  Google Scholar 

  35. Hersch, G.L., Baker, T.A. & Sauer, R.T. SspB delivery of substrates for ClpXP proteolysis probed by the design of improved degradation tags. Proc. Natl. Acad. Sci. USA 101, 12136–12141 (2004).

    Article  CAS  Google Scholar 

  36. Feng, S., Chen, J.K., Yu, H., Simon, J.A. & Schreiber, S.L. Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science 266, 1241–1247 (1994).

    Article  CAS  Google Scholar 

  37. Yu, H. et al. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76, 933–945 (1994).

    Article  CAS  Google Scholar 

  38. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  39. Wallace, A.C., Laskowski, R.A. & Thornton, J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8, 127–134 (1995).

    Article  CAS  Google Scholar 

  40. Sauer et al. Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell 119, 9–18 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

T.A.B., I.L. and J.M.F. are employees of Howard Hughes Medical Institute (HHMI). We thank D. Bolon for the gift the SspB A74Q mutant, G. Hersch for the labeled ssrA peptide and other members of the Baker and Sauer labs for help and advice. This work was supported by HHMI and US National Institutes of Health (NIH) grant AI-16892. Studies conducted at the NE-CAT beamlines of the Advanced Photon Source were supported by award RR-15301 from the NIH National Center for Research Resources and by the US Department of Energy Office of Basic Energy Sciences under contract W-31-109-ENG-38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania A Baker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Electron density and refined model at contact positions between the RseA peptide and SspB that have been probed by mutation. (PDF 2496 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levchenko, I., Grant, R., Flynn, J. et al. Versatile modes of peptide recognition by the AAA+ adaptor protein SspB. Nat Struct Mol Biol 12, 520–525 (2005). https://doi.org/10.1038/nsmb934

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb934

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing