Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54

Abstract

SWI2/SNF2 chromatin-remodeling proteins mediate the mobilization of nucleosomes and other DNA-associated proteins. SWI2/SNF2 proteins contain sequence motifs characteristic of SF2 helicases but do not have helicase activity. Instead, they couple ATP hydrolysis with the generation of superhelical torsion in DNA. The structure of the nucleosome-remodeling domain of zebrafish Rad54, a protein involved in Rad51-mediated homologous recombination, reveals that the core of the SWI2/SNF2 enzymes consist of two α/β-lobes similar to SF2 helicases. The Rad54 helicase lobes contain insertions that form two helical domains, one within each lobe. These insertions contain SWI2/SNF2-specific sequence motifs likely to be central to SWI2/SNF2 function. A broad cleft formed by the two lobes and flanked by the helical insertions contains residues conserved in SWI2/SNF2 proteins and motifs implicated in DNA-binding by SF2 helicases. The Rad54 structure suggests that SWI2/SNF2 proteins use a mechanism analogous to helicases to translocate on dsDNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the structure of zebrafish Rad54 (dnRad54ΔN).
Figure 2: Surface conservation of Rad54.
Figure 3: Overview of the SWI2/SNF2-specific domains HD1 and HD2.
Figure 4: The position of canonical helicase motifs and SWI2/SNF2-specific helicase motifs in Rad54.
Figure 5: Juxtapositions of nucleic acid–bound RecG and HCV NS3 with the structure of Rad54.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Flaus, A. & Owen-Hughes, T. Mechanisms for ATP-dependent chromatin remodelling: farewell to the tuna-can octamer? Curr. Opin. Genet. Dev. 14, 165–173 (2004).

    Article  CAS  Google Scholar 

  2. Langst, G. & Becker, P.B. Nucleosome remodeling: one mechanism, many phenomena? Biochim. Biophys. Acta 1677, 58–63 (2004).

    Article  CAS  Google Scholar 

  3. Flaus, A. & Owen-Hughes, T. Mechanisms for ATP-dependent chromatin remodelling. Curr. Opin. Genet. Dev. 11, 148–154 (2001).

    Article  CAS  Google Scholar 

  4. Becker, P.B. & Horz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002).

    Article  CAS  Google Scholar 

  5. Davis, J.L., Kunisawa, R. & Thorner, J. A presumptive helicase (MOT1 gene product) affects gene expression and is required for viability in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 1879–1892 (1992).

    Article  CAS  Google Scholar 

  6. Gorbalenya, A.E. & Koonin, E.V. Helicases: amino acid sequence comparisons and structure-function relationships. Curr. Opin. Struct. Biol. 3, 419–429 (1993).

    Article  CAS  Google Scholar 

  7. Singleton, M.R. & Wigley, D.B. Modularity and specialization in superfamily 1 and 2 helicases. J. Bacteriol. 184, 1819–1826 (2002).

    Article  CAS  Google Scholar 

  8. Caruthers, J.M. & McKay, D.B. Helicase structure and mechanism. Curr. Opin. Struct. Biol. 12, 123–133 (2002).

    Article  CAS  Google Scholar 

  9. Eisen, J.A., Sweder, K.S. & Hanawalt, P.C. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 23, 2715–2723 (1995).

    Article  CAS  Google Scholar 

  10. Richmond, E. & Peterson, C.L. Functional analysis of the DNA-stimulated ATPase domain of yeast SWI2/SNF2. Nucleic Acids Res. 24, 3685–3692 (1996).

    Article  CAS  Google Scholar 

  11. Bork, P. & Koonin, E.V. An expanding family of helicases within the 'DEAD/H' superfamily. Nucleic Acids Res. 21, 751–752 (1993).

    Article  CAS  Google Scholar 

  12. Cote, J., Quinn, J., Workman, J.L. & Peterson, C.L. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265, 53–60 (1994).

    Article  CAS  Google Scholar 

  13. Havas, K. et al. Generation of superhelical torsion by ATP-dependent chromatin remodeling activities. Cell 103, 1133–1142 (2000).

    Article  CAS  Google Scholar 

  14. Krogh, B.O. & Symington, L.S. Recombination proteins in yeast. Annu. Rev. Genet. 38, 233–271 (2004).

    Article  CAS  Google Scholar 

  15. Wolner, B., van Komen, S., Sung, P. & Peterson, C.L. Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. Mol. Cell 12, 221–232 (2003).

    Article  CAS  Google Scholar 

  16. Mazin, A.V., Alexeev, A.A. & Kowalczykowski, S.C. A novel function of Rad54 protein. Stabilization of the Rad51 nucleoprotein filament. J. Biol. Chem. 278, 14029–14036 (2003).

    Article  CAS  Google Scholar 

  17. Alexiadis, V. & Kadonaga, J.T. Strand pairing by Rad54 and Rad51 is enhanced by chromatin. Genes Dev. 16, 2767–2771 (2002).

    Article  CAS  Google Scholar 

  18. Alexeev, A., Mazin, A. & Kowalczykowski, S.C. Rad54 protein possesses chromatin-remodeling activity stimulated by the Rad51-ssDNA nucleoprotein filament. Nat. Struct. Biol. 10, 182–186 (2003).

    Article  CAS  Google Scholar 

  19. Jaskelioff, M., Van Komen, S., Krebs, J.E., Sung, P. & Peterson, C.L. Rad54p is a chromatin remodeling enzyme required for heteroduplex DNA joint formation with chromatin. J. Biol. Chem. 278, 9212–9218 (2003).

    Article  CAS  Google Scholar 

  20. Solinger, J.A., Kiianitsa, K. & Heyer, W.D. Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol. Cell 10, 1175–1188 (2002).

    Article  CAS  Google Scholar 

  21. Van Komen, S., Petukhova, G., Sigurdsson, S., Stratton, S. & Sung, P. Superhelicity-driven homologous DNA pairing by yeast recombination factors Rad51 and Rad54. Mol. Cell 6, 563–572 (2000).

    Article  CAS  Google Scholar 

  22. Tan, T.L., Kanaar, R. & Wyman, C. Rad54, a Jack of all trades in homologous recombination. DNA Repair (Amst.) 2, 787–794 (2003).

    Article  Google Scholar 

  23. Petukhova, G., Stratton, S. & Sung, P. Catalysis of homologous DNA pairing by yeast Rad51 and Rad54 proteins. Nature 393, 91–94 (1998).

    Article  CAS  Google Scholar 

  24. Golub, E.I., Kovalenko, O.V., Gupta, R.C., Ward, D.C. & Radding, C.M. Interaction of human recombination proteins Rad51 and Rad54. Nucleic Acids Res. 25, 4106–4110 (1997).

    Article  CAS  Google Scholar 

  25. Raschle, M., Van Komen, S., Chi, P., Ellenberger, T. & Sung, P. Multiple interactions with the Rad51 recombinase govern the homologous recombination function of Rad54. J. Biol. Chem. 279, 51973–51980 (2004).

    Article  CAS  Google Scholar 

  26. Alexiadis, V., Lusser, A. & Kadonaga, J.T. A conserved N-terminal motif in Rad54 is important for chromatin remodeling and homologous strand pairing. J. Biol. Chem. 279, 27824–27829 (2004).

    Article  CAS  Google Scholar 

  27. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  28. Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D 60, 2256–2268 (2004).

    Article  CAS  Google Scholar 

  29. Singleton, M.R., Scaife, S. & Wigley, D.B. Structural analysis of DNA replication fork reversal by RecG. Cell 107, 79–89 (2001).

    Article  CAS  Google Scholar 

  30. Caruthers, J.M., Johnson, E.R. & McKay, D.B. Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. Proc. Natl Acad. Sci. USA 97, 13080–13085 (2000).

    Article  CAS  Google Scholar 

  31. Story, R.M., Li, H. & Abelson, J.N. Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii. Proc. Natl. Acad. Sci. USA 98, 1465–1470 (2001).

    Article  CAS  Google Scholar 

  32. Bernstein, D.A., Zittel, M.C. & Keck, J.L. High-resolution structure of the E. coli RecQ helicase catalytic core. EMBO J. 22, 4910–4921 (2003).

    Article  CAS  Google Scholar 

  33. Machius, M., Henry, L., Palnitkar, M. & Deisenhofer, J. Crystal structure of the DNA nucleotide excision repair enzyme UvrB from Thermus thermophilus. Proc. Natl. Acad. Sci. USA 96, 11717–11722 (1999).

    Article  CAS  Google Scholar 

  34. Kim, J.L. et al. Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure 6, 89–100 (1998).

    Article  CAS  Google Scholar 

  35. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 30, 276–280 (2002).

    Article  CAS  Google Scholar 

  36. Velankar, S.S., Soultanas, P., Dillingham, M.S., Subramanya, H.S. & Wigley, D.B. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97, 75–84 (1999).

    Article  CAS  Google Scholar 

  37. Tuteja, N. & Tuteja, R. Unraveling DNA helicases. Motif, structure, mechanism and function. Eur. J. Biochem. 271, 1849–1863 (2004).

    Article  CAS  Google Scholar 

  38. Boerkoel, C.F. et al. Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nat. Genet. 30, 215–220 (2002).

    Article  CAS  Google Scholar 

  39. Hiramoto, T. et al. Mutations of a novel human RAD54 homologue, RAD54B, in primary cancer. Oncogene 18, 3422–3426 (1999).

    Article  CAS  Google Scholar 

  40. Smirnova, M., Van Komen, S., Sung, P. & Klein, H.L. Effects of tumor-associated mutations on Rad54 functions. J. Biol. Chem. 279, 24081–24088 (2004).

    Article  CAS  Google Scholar 

  41. Matsuda, M. et al. Mutations in the RAD54 recombination gene in primary cancers. Oncogene 18, 3427–3430 (1999).

    Article  CAS  Google Scholar 

  42. Wada, T., Kubota, T., Fukushima, Y. & Saitoh, S. Molecular genetic study of Japanese patients with X-linked alpha-thalassemia/mental retardation syndrome (ATR-X). Am. J. Med. Genet. 94, 242–248 (2000).

    Article  CAS  Google Scholar 

  43. Ristic, D., Wyman, C., Paulusma, C. & Kanaar, R. The architecture of the human Rad54-DNA complex provides evidence for protein translocation along DNA. Proc. Natl. Acad. Sci. USA 98, 8454–8460 (2001).

    Article  CAS  Google Scholar 

  44. Smith, C.L., Horowitz-Scherer, R., Flanagan, J.F., Woodcock, C.L. & Peterson, C.L. Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nat. Struct. Biol. 10, 141–145 (2003).

    Article  CAS  Google Scholar 

  45. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  46. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002).

    Article  Google Scholar 

  47. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D 59, 2023–2030 (2003).

  48. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  49. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  50. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Ogata at APS 8BM, and A. Mulichak and L. Keefe at APS IMCA-CAT ID17, for help during data collection; and M. Lu of the Weill Cornell Medical Center (New York) for help with the analytical ultracentrifugation experiments. N.H.T would like to acknowledge the Human Frontiers Science Program for a long-term fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola P Pavletich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The zebrafish Rad54 crystallization construct is active in supercoiling assays. (PDF 501 kb)

Supplementary Fig. 2

Alignment of Rad54 orthologs. (PDF 137 kb)

Supplementary Fig. 3

Section of the electron density map of Rad54. (PDF 883 kb)

Supplementary Fig. 4

DNA binding activity of Rad54. (PDF 486 kb)

Supplementary Fig. 5

Analytical ultra-centrifugation indicated that Rad54 is monomeric in solution. (PDF 116 kb)

Supplementary Table 1

Zebrafish Rad54 has DNA dependent ATPase activity comparable to that of the human enzyme. (PDF 96 kb)

Supplementary Table 2

Conservation of helicase motifs. (PDF 115 kb)

Supplementary Methods (PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomä, N., Czyzewski, B., Alexeev, A. et al. Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54. Nat Struct Mol Biol 12, 350–356 (2005). https://doi.org/10.1038/nsmb919

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb919

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing