Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A critical step in the folding of influenza virus HA determined with a novel folding assay

Abstract

Most principles of protein folding emerged from refolding studies in vitro on small, soluble proteins, because large ones tend to misfold and aggregate. We developed a folding assay allowing the study of large proteins in detergent such that the extent of cellular assistance required for proper folding can be determined. We identified a critical step in the in vivo folding pathway of influenza virus hemagglutinin (HA). Only the formation of the first few disulfides in the top domain of HA required the intact endoplasmic reticulum. After that, HA proceeded to fold efficiently in a very dilute solution, despite its size and complexity. This study paves the way for detailed structural analyses during the folding of complex proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HA folds in a diluted detergent cell lysate.
Figure 2: In vitro folded HA acquires the correct epitopes.
Figure 3: Reduced HA cannot fold in a diluted lysate.
Figure 5: The bottleneck of HA folding: formation of the first few disulfides.
Figure 4: Reduced HA can fold in vivo in the absence of CNX or CRT binding.
Figure 6: Rescue of reduced HA in the absence of calnexin binding.

Similar content being viewed by others

References

  1. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–230 (1973).

    Article  CAS  Google Scholar 

  2. Gething, M.J. & Sambrook, J. Protein folding in the cell. Nature 355, 33–45 (1992).

    Article  CAS  Google Scholar 

  3. Hartl, F.U. Molecular chaperones in cellular protein folding. Nature 381, 571–579 (1996).

    Article  CAS  Google Scholar 

  4. Kleizen, B. & Braakman, I. Protein folding and quality control in the endoplasmic reticulum. Curr. Opin. Cell Biol. 16, 343–349 (2004).

    Article  CAS  Google Scholar 

  5. Copeland, C.S. et al. Folding, trimerization, and transport are sequential events in the biogenesis of influenza virus hemagglutinin. Cell 53, 197–209 (1988).

    Article  CAS  Google Scholar 

  6. Braakman, I., Hoover-Litty, H., Wagner, K.R. & Helenius, A. Folding of influenza hemagglutinin in the endoplasmic reticulum. J. Cell Biol. 114, 401–411 (1991).

    Article  CAS  Google Scholar 

  7. Braakman, I., Helenius, J. & Helenius, A. Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J. 11, 1717–1722 (1992).

    Article  CAS  Google Scholar 

  8. Braakman, I., Helenius, J. & Helenius, A. Role of ATP and disulphide bonds during protein folding in the endoplasmic reticulum. Nature 356, 260–262 (1992).

    Article  CAS  Google Scholar 

  9. Segal, M.S., Bye, J.M., Sambrook, J.F. & Gething, M.J. Disulfide bond formation during the folding of influenza virus hemagglutinin. J. Cell Biol. 118, 227–244 (1992).

    Article  CAS  Google Scholar 

  10. Chen, W., Helenius, J., Braakman, I. & Helenius, A. Cotranslational folding and calnexin binding during glycoprotein synthesis. Proc. Natl. Acad. Sci. USA 92, 6229–6233 (1995).

    Article  CAS  Google Scholar 

  11. Molinari, M. et al. Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol. Cell 13, 125–135 (2004).

    Article  CAS  Google Scholar 

  12. Marquardt, T., Hebert, D.N. & Helenius, A. Post-translational folding of influenza hemagglutinin in isolated endoplasmic reticulum-derived microsomes. J. Biol. Chem. 268, 19618–19625 (1993).

    CAS  PubMed  Google Scholar 

  13. Hebert, D.N., Foellmer, B. & Helenius, A. Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO J. 15, 2961–2968 (1996).

    Article  CAS  Google Scholar 

  14. Daniels, R., Kurowski, B., Johnson, A.E. & Hebert, D.N. N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol. Cell 11, 79–90 (2003).

    Article  CAS  Google Scholar 

  15. Hammond, C., Braakman, I. & Helenius, A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. USA 91, 913–917 (1994).

    Article  CAS  Google Scholar 

  16. Hebert, D.N., Zhang, J.X., Chen, W., Foellmer, B. & Helenius, A. The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J. Cell Biol. 139, 613–623 (1997).

    Article  CAS  Google Scholar 

  17. Oliver, J.D., Roderick, H.L., Llewellyn, D.H. & High, S. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol. Biol. Cell 10, 2573–2582 (1999).

    Article  CAS  Google Scholar 

  18. Tatu, U., Hammond, C. & Helenius, A. Folding and oligomerization of influenza hemagglutinin in the ER and the intermediate compartment. EMBO J. 14, 1340–1348 (1995).

    Article  CAS  Google Scholar 

  19. Singh, I., Doms, R.W., Wagner, K.R. & Helenius, A. Intracellular transport of soluble and membrane-bound glycoproteins: folding, assembly and secretion of anchor-free influenza hemagglutinin. EMBO J. 9, 631–639 (1990).

    Article  CAS  Google Scholar 

  20. Copeland, C.S., Doms, R.W., Bolzau, E.M., Webster, R.G. & Helenius, A. Assembly of influenza hemagglutinin trimers and its role in intracellular transport. J. Cell Biol. 103, 1179–1191 (1986).

    Article  CAS  Google Scholar 

  21. Tatu, U., Braakman, I. & Helenius, A. Membrane glycoprotein folding, oligomerization and intracellular transport: effects of dithiothreitol in living cells. EMBO J. 12, 2151–2157 (1993).

    Article  CAS  Google Scholar 

  22. Ray, M.K., Yang, J., Sundaram, S. & Stanley, P. A novel glycosylation phenotype expressed by Lec23, a Chinese hamster ovary mutant deficient in α-glucosidase I. J. Biol. Chem. 266, 22818–22825 (1991).

    CAS  PubMed  Google Scholar 

  23. Wilson, I.A., Skehel, J.J. & Wiley, D.C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 289, 366–373 (1981).

    Article  CAS  Google Scholar 

  24. Chen, W. & Helenius, A. Role of ribosome and translocon complex during folding of influenza hemagglutinin in the endoplasmic reticulum of living cells. Mol. Biol. Cell 11, 765–772 (2000).

    Article  CAS  Google Scholar 

  25. Peterson, J.R. & Helenius, A. In vitro reconstitution of calreticulin-substrate interactions. J. Cell Sci. 112, 2775–2784 (1999).

    CAS  PubMed  Google Scholar 

  26. Air, G.M. Sequence relationships among the hemagglutinin genes of 12 subtypes of influenza A virus. Proc. Natl. Acad. Sci. USA 78, 7639–7643 (1981).

    Article  CAS  Google Scholar 

  27. Naeve, C.W. & Webster, R.G. Sequence of the hemagglutinin gene from influenza virus A/Seal/Mass/1/80. Virol. 129, 298–308 (1983).

    Article  CAS  Google Scholar 

  28. Mathieu, M.E., Grigera, P.R., Helenius, A. & Wagner, R.R. Folding, unfolding, and refolding of the vesicular stomatitis virus glycoprotein. Biochemistry 35, 4084–4093 (1996).

    Article  CAS  Google Scholar 

  29. Wada, I., Kai, M., Imai, S., Sakane, F. & Kanoh, H. Promotion of transferrin folding by cyclic interactions with calnexin and calreticulin. EMBO J. 16, 5420–5432 (1997).

    Article  CAS  Google Scholar 

  30. Fuerst, T.R., Niles, E.G., Studier, F.W. & Moss, B. Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 83, 8122–8126 (1986).

    Article  CAS  Google Scholar 

  31. Zagouras, P. & Rose, J.K. Carboxy-terminal SEKDEL sequences retard but do not retain two secretory proteins in the endoplasmic reticulum. J. Cell Biol. 109, 2633–2640 (1989).

    Article  CAS  Google Scholar 

  32. Privalsky, M.L. & Penhoet, E.E. Influenza virus proteins: identity, synthesis, and modification analyzed by two-dimensional gel electrophoresis. Proc. Natl. Acad. Sci. USA 75, 3625–3629 (1978).

    Article  CAS  Google Scholar 

  33. Kistner, O., Muller, K. & Scholtissek, C. Differential phosphorylation of the nucleoprotein of influenza A viruses. J. Gen. Virol. 70, 2421–2431 (1989).

    Article  CAS  Google Scholar 

  34. Bullido, R., Gomez-Puertas, P., Albo, C. & Portela, A. Several protein regions contribute to determine the nuclear and cytoplasmic localization of the influenza A virus nucleoprotein. J. Gen. Virol. 81, 135–142 (2000).

    Article  CAS  Google Scholar 

  35. Daniels, R.S., Douglas, A.R., Skehel, J.J. & Wiley, D.C. Analyses of the antigenicity of influenza haemagglutinin at the pH optimum for virus-mediated membrane fusion. J. Gen. Virol. 64, 1657–1662 (1983).

    Article  CAS  Google Scholar 

  36. Daniels, R.S. et al. Antigenic analyses of influenza virus haemagglutinins with different receptor-binding specificities. Virol. 138, 174–177 (1984).

    Article  CAS  Google Scholar 

  37. Benham, A.M. et al. The CXXCXXC motif determines the folding, structure and stability of human Ero1-Lα. EMBO J. 19, 4493–4502 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Tabak, A. Ora and A. Azuaga-Fortes for comments, discussions and critical reading of the manuscript, and B. Kleizen, M. Molinari, A. Helenius and members of the Braakman lab for fruitful discussions. We thank J. Smit for preparing the cartoon of HA (Fig. 2a). The work was supported by a grant from Telethon Foundation, Italy (M.C.M.), a European Union Marie Curie Research Training grant (M.C.M.), and Netherlands Organization for Scientific Research/Chemical Sciences (I.M.L. and I.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ineke Braakman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maggioni, M., Liscaljet, I. & Braakman, I. A critical step in the folding of influenza virus HA determined with a novel folding assay. Nat Struct Mol Biol 12, 258–263 (2005). https://doi.org/10.1038/nsmb897

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb897

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing