Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The yeast DASH complex forms closed rings on microtubules

Abstract

The Saccharomyces cerevisiae DASH complex is an essential microtubule-binding component of the kinetochore. We coexpressed all ten subunits of this assembly in Escherichia coli and purified a single complex, a 210-kDa heterodecamer with an apparent stoichiometry of one copy of each subunit. The hydrodynamic properties of the recombinant assembly are indistinguishable from those of the native complex in yeast extracts. The structure of DASH alone and bound to microtubules was visualized by EM. The free heterodecamer is relatively globular. In the presence of microtubules, DASH oligomerizes to form rings and paired helices that encircle the microtubules. We discuss potential roles for such collar-like structures in maintaining microtubule attachment and spindle integrity during chromosome segregation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hydrodynamic analysis of recombinant and native DASH.
Figure 2: Electron micrograph of a representative field of DASH heterodecamers shadowed with platinum.
Figure 3: Decoration of MTs with DASH.
Figure 4: Different modes of MT decoration by DASH.
Figure 5: Immunogold labeling of MTs decorated with DASH.
Figure 6: Schematic model of MTs decorated with DASH.

Similar content being viewed by others

References

  1. McAinsh, A.D., Tytell, J.D. & Sorger, P.K. Structure, function, and regulation of budding yeast kinetochores. Annu. Rev. Cell Dev. Biol. 19, 519–539 (2003).

    Article  CAS  Google Scholar 

  2. Hofmann, C. et al. Saccharomyces cerevisiae Duo1p and Dam1p, novel proteins involved in mitotic spindle function. J. Cell Biol. 143, 1029–1040 (1998).

    Article  CAS  Google Scholar 

  3. Jones, M.H., Bachant, J.B., Castillo, A.R., Giddings, T.H. Jr. & Winey, M. Yeast Dam1p is required to maintain spindle integrity during mitosis and interacts with the Mps1p kinase. Mol. Biol. Cell 10, 2377–2391 (1999).

    Article  CAS  Google Scholar 

  4. Cheeseman, I.M., Enquist-Newman, M., Muller-Reichert, T., Drubin, D.G. & Barnes, G. Mitotic spindle integrity and kinetochore function linked by the Duo1p/Dam1p complex. J. Cell Biol. 152, 197–212 (2001).

    Article  CAS  Google Scholar 

  5. Jones, M.H., He, X., Giddings, T.H. & Winey, M. Yeast Dam1p has a role at the kinetochore in assembly of the mitotic spindle. Proc. Natl. Acad. Sci. USA 98, 13675–13680 (2001).

    Article  CAS  Google Scholar 

  6. Cheeseman, I.M. et al. Implication of a novel multiprotein Dam1p complex in outer kinetochore function. J. Cell Biol. 155, 1137–1145 (2001).

    Article  CAS  Google Scholar 

  7. Janke, C., Ortiz, J., Tanaka, T.U., Lechner, J. & Schiebel, E. Four new subunits of the Dam1-Duo1 complex reveal novel functions in sister kinetochore biorientation. EMBO J. 21, 181–193 (2002).

    Article  CAS  Google Scholar 

  8. Li, Y. et al. The mitotic spindle is required for loading of the DASH complex onto the kinetochore. Genes Dev. 16, 183–197 (2002).

    Article  CAS  Google Scholar 

  9. Cheeseman, I.M. et al. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111, 163–172 (2002).

    Article  CAS  Google Scholar 

  10. Li, J., Li, Y. & Elledge, S.J. Genetic analysis of the kinetochore DASH complex reveals an antagonistic relationship with the ras/protein kinase A pathway and a novel subunit required for Ask1 association. Mol. Cell. Biol. 25, 767–778 (2005).

    Article  CAS  Google Scholar 

  11. He, X., Rines, D.R., Espelin, C.W. & Sorger, P.K. Molecular analysis of kinetochore-microtubule attachment in budding yeast. Cell 106, 195–206 (2001).

    Article  CAS  Google Scholar 

  12. Enquist-Newman, M. et al. Dad1p, third component of the Duo1p/Dam1p complex involved in kinetochore function and mitotic spindle integrity. Mol. Biol. Cell 12, 2601–2613 (2001).

    Article  CAS  Google Scholar 

  13. Tanaka, T.U. et al. Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108, 317–329 (2002).

    Article  CAS  Google Scholar 

  14. Shang, C. et al. Kinetochore protein interactions and their regulation by the Aurora kinase Ipl1p. Mol. Biol. Cell 14, 3342–3355 (2003).

    Article  CAS  Google Scholar 

  15. Hill, T.L. Theoretical problems related to the attachment of microtubules to kinetochores. Proc. Natl. Acad. Sci. USA 82, 4404–4408 (1985).

    Article  CAS  Google Scholar 

  16. Tan, S. A modular polycistronic expression system for overexpressing protein complexes in Escherichia coli. Protein Expr. Purif. 21, 224–234 (2001).

    Article  CAS  Google Scholar 

  17. Rial, D.V. & Ceccarelli, E.A. Removal of DnaK contamination during fusion protein purifications. Protein Expr. Purif. 25, 503–507 (2002).

    Article  CAS  Google Scholar 

  18. Gragerov, A., Zeng, L., Zhao, X., Burkholder, W. & Gottesman, M.E. Specificity of DnaK-peptide binding. J. Mol. Biol. 235, 848–854 (1994).

    Article  CAS  Google Scholar 

  19. Jacobs, M., Bennett, P.M. & Dickens, M.J. Duplex microtubule is a new form of tubulin assembly induced by polycations. Nature 257, 707–709 (1975).

    Article  CAS  Google Scholar 

  20. Behnke, O. An outer component of microtubules. Nature 257, 709–710 (1975).

    Article  CAS  Google Scholar 

  21. Erickson, H.P. & Voter, W.A. Polycation-induced assembly of purified tubulin. Proc. Natl. Acad. Sci. USA 73, 2813–2817 (1976).

    Article  CAS  Google Scholar 

  22. Erickson, H.P. Facilitation of microtubule assembly by polycations. In Cell Motility Vol. 3 (eds. Goldman, R., Pollard, T. & Rosenbaum, J.) 1069–1080 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1976).

    Google Scholar 

  23. Al-Bassam, J., Ozer, R.S., Safer, D., Halpain, S. & Milligan, R.A. MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments. J. Cell Biol. 157, 1187–1196 (2002).

    Article  CAS  Google Scholar 

  24. Kikkawa, M., Ishikawa, T., Wakabayashi, T. & Hirokawa, N. Three-dimensional structure of the kinesin head-microtubule complex. Nature 376, 274–277 (1995).

    Article  CAS  Google Scholar 

  25. Hoenger, A. et al. A new look at the microtubule binding patterns of dimeric kinesins. J. Mol. Biol. 297, 1087–1103 (2000).

    Article  CAS  Google Scholar 

  26. Sawaya, M.R., Guo, S., Tabor, S., Richardson, C.C. & Ellenberger, T. Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7. Cell 99, 167–177 (1999).

    Article  CAS  Google Scholar 

  27. Singleton, M.R., Sawaya, M.R., Ellenberger, T. & Wigley, D.B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589–600 (2000).

    Article  CAS  Google Scholar 

  28. Hinshaw, J.E. & Schmid, S.L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192 (1995).

    Article  CAS  Google Scholar 

  29. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003).

    Article  CAS  Google Scholar 

  30. Moores, C.A. et al. Mechanism of microtubule stabilization by doublecortin. Mol. Cell 14, 833–839 (2004).

    Article  CAS  Google Scholar 

  31. Hingorani, M.M. & O'Donnell, M. A tale of toroids in DNA metabolism. Nat. Rev. Mol. Cell Biol. 1, 22–30 (2000).

    Article  CAS  Google Scholar 

  32. Horiike, K., Tojo, H., Yamano, T. & Nozaki, M. Interpretation of the Stokes radius of macromolecules determined by gel filtration chromatography. J. Biochem. 93, 99–106 (1983).

    Article  CAS  Google Scholar 

  33. Salmon, E.D., Saxton, W.M., Leslie, R.J., Karow, M.L. & McIntosh, J.R. Diffusion coefficient of fluorescein-labeled tubulin in the cytoplasm of embryonic cells of a sea urchin: video image analysis of fluorescence redistribution after photobleaching. J. Cell Biol. 99, 2157–2164 (1984).

    Article  CAS  Google Scholar 

  34. Sorger, P.K. & Pelham, H.R. Purification and characterization of a heat-shock element binding protein from yeast. EMBO J. 6, 3035–3041 (1987).

    Article  CAS  Google Scholar 

  35. Russell, I.D., Grancell, A.S. & Sorger, P.K. The unstable F-box protein p58-Ctf13 forms the structural core of the CBF3 kinetochore complex. J. Cell Biol. 145, 933–950 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Wong, D. Drubin, G. Barnes (University of California Berkeley), Y. Li (Baylor College of Medicine), J. Li and S. Elledge (Harvard Medical School) for communicating results before publication; K. Simons, Y. Cheng, G. Skiniotis, T. Walz, and the Cell Biology EM Facility for help with EM; D. King (University of California Berkeley) for mass spectrometry; C. Espelin for testing polyclonal antibodies; K. Simons and T. Sutani for critical reading of the manuscript; and members of the Harrison and Sorger laboratories for helpful discussions. J.L.M. is supported by a US National Science Foundation Predoctoral Fellowship, P.K.S. and P.D.W. are supported by US National Institutes of Health grant GM51464, and S.C.H. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C Harrison.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Recombinant coexpression of DASH. (PDF 133 kb)

Supplementary Fig. 2

MT cosedimentation assay. (PDF 225 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miranda, J., Wulf, P., Sorger, P. et al. The yeast DASH complex forms closed rings on microtubules. Nat Struct Mol Biol 12, 138–143 (2005). https://doi.org/10.1038/nsmb896

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb896

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing