Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for mRNA recognition by elongation factor SelB

Abstract

In bacteria, incorporation of selenocysteine, the 21st amino acid, into proteins requires elongation factor SelB, which has the unusual property of binding to both transfer RNA (tRNA) and mRNA. SelB binds to an mRNA hairpin formed by the selenocysteine insertion sequence (SECIS) with extremely high specificity, the molecular basis of which has been unknown. We have determined the crystal structure of the mRNA-binding domain of SelB in complex with SECIS RNA at a resolution of 2.3 Å. This is the first example of a complex between an RNA and a winged-helix (WH) domain, a motif found in many DNA-binding proteins and recently discovered in RNA-binding proteins. Notably, RNA binding does not induce a major conformational change in the WH motif. The structure reveals a new mode of RNA recognition with a geometry that allows the complex to wrap around the small ribosomal subunit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Secondary structure of SECIS and domain structure of SelB.
Figure 2: Structure of the SelB mRNA-binding domain–SECIS RNA complex.
Figure 3: Comparison of WH protein–DNA complexes.
Figure 4: Protein-RNA interactions in the SelB-M–SECIS RNA complex.
Figure 5: Functional groups of SECIS RNA required for SelB-M binding.
Figure 6: A model of SelB–tRNASec–mRNA complex bound to the ribosome.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Böck, A. et al. Selenocysteine: the 21st amino acid. Mol. Microbiol. 5, 515–520 (1991).

    Article  Google Scholar 

  2. Boyington, J.C., Gladyshev, V.N., Khangulov, S.V., Stadtman, T.C. & Sun, P.D. Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275, 1305–1308 (1997).

    Article  CAS  Google Scholar 

  3. Forchhammer, K., Leinfelder, W. & Böck, A. Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature 342, 453–456 (1989).

    Article  CAS  Google Scholar 

  4. Nissen, P. et al. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu and a GTP analog. Science 270, 1464–1472 (1995).

    Article  CAS  Google Scholar 

  5. Stark, H. et al. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature 389, 403–406 (1997).

    Article  CAS  Google Scholar 

  6. Pape, T., Wintermeyer, W. & Rodnina, M. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. EMBO J. 18, 3800–3807 (1999).

    Article  CAS  Google Scholar 

  7. Ogle, J.M., Murphy, F.V., Tarry, M.J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732 (2002).

    Article  CAS  Google Scholar 

  8. Kromayer, M., Wilting, R., Tormay, P. & Böck, A. Domain structure of the prokaryotic selenocysteine-specific elongation factor SelB. J. Mol. Biol. 262, 413–420 (1996).

    Article  CAS  Google Scholar 

  9. Thanbichler, M., Böck, A. & Goody, R.S. Kinetics of the interaction of translation factor SelB from Escherichia coli with guanosine nucleotides and selenocysteine insertion sequence RNA. J. Biol. Chem. 275, 20458–20466 (2000).

    Article  CAS  Google Scholar 

  10. Heider, J., Baron, C. & Böck, A. Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into protein. EMBO J. 11, 3759–3766 (1992).

    Article  CAS  Google Scholar 

  11. Li, C., Reches, M. & Engelberg-Kulka, H. The bulged nucleotide in the Escherichia coli minimal selenocysteine insertion sequence participates in interaction with SelB: a genetic approach. J. Bacteriol. 182, 6302–6307 (2000).

    Article  CAS  Google Scholar 

  12. Fourmy, D., Guittet, E. & Yoshizawa, S. Structure of prokaryotic SECIS mRNA hairpin and its interaction with elongation factor SelB. J. Mol. Biol. 324, 137–150 (2002).

    Article  CAS  Google Scholar 

  13. Hüttenhofer, A., Westhof, E. & Böck, A. Solution structure of mRNA hairpins promoting selenocysteine incorporation in Escherichia coli and their base-specific interaction with special elongation factor SELB. RNA 2, 354–366 (1996).

    PubMed  PubMed Central  Google Scholar 

  14. Sandman, K.E., Tardiff, D.F., Neely, L.A. & Noren, C.J. Revised Escherichia coli selenocysteine insertion requirements determined by in vivo screening of combinatorial libraries of SECIS variants. Nucleic Acids Res. 31, 2234–2241 (2003).

    Article  CAS  Google Scholar 

  15. Selmer, M. & Su, X.D. Crystal structure of an mRNA-binding fragment of Moorella thermoacetica elongation factor SelB. EMBO J. 21, 4145–4153 (2002).

    Article  CAS  Google Scholar 

  16. Wintjens, R. & Rooman, M. Structural classification of HTH DNA-binding domains and protein-DNA interaction modes. J. Mol. Biol. 262, 294–313 (1996).

    Article  CAS  Google Scholar 

  17. Clark, K.L., Halay, E.D., Lai, E. & Burley, S.K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364, 412–420 (1993).

    Article  CAS  Google Scholar 

  18. Gajiwala, K.S. & Burley, S.K. Winged helix proteins. Curr. Opin. Struct. Biol. 10, 110–116 (2000).

    Article  CAS  Google Scholar 

  19. Hüttenhofer, A. & Böck, A. Selenocysteine inserting RNA elements modulate GTP hydrolysis of elongation factor SelB. Biochemistry 37, 885–890 (1998).

    Article  Google Scholar 

  20. Batey, R.T., Rambo, R.P., Lucast, L., Rha, B. & Doudna, J.A. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287, 1232–1239 (2000).

    Article  CAS  Google Scholar 

  21. Alfano, C. et al. Structural analysis of cooperative RNA binding by the La motif and central RRM domain of human La protein. Nat. Struct. Mol. Biol. 11, 323–329 (2004).

    Article  CAS  Google Scholar 

  22. Dong, G., Chakshusmathi, G., Wolin, S.L. & Reinisch, K.M. Structure of the La motif: a winged helix domain mediates RNA binding via a conserved aromatic patch. EMBO J. 23, 1000–1007 (2004).

    Article  CAS  Google Scholar 

  23. Schumacher, M., Lau, A. & Johnson, P. Structural basis of core promoter recognition in a primitive eukaryote. Cell 115, 413–424 (2003).

    Article  CAS  Google Scholar 

  24. Gajiwala, K.S. et al. Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature 403, 916–921 (2000).

    Article  CAS  Google Scholar 

  25. Schwartz, T., Rould, M.A., Lowenhaupt, K., Herbert, A. & Rich, A. Crystal structure of the Zα domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 284, 1841–1845 (1999).

    Article  CAS  Google Scholar 

  26. Ryder, S.P., Ortoleva-Donelly, L., Kosek, A.B. & Strobel, S.A. Chemical probing of RNA by nucleotide analog interference mapping. Methods Enzymol. 317, 92–109 (2000).

    Article  CAS  Google Scholar 

  27. Mo, Y., Vaessen, B., Johnston, K. & Marmorstein, R. Structures of SAP-1 bound to DNA targets from the E74 and c-fos promoters: insights into DNA sequence discrimination by Ets proteins. Mol. Cell 2, 201–212 (1998).

    Article  CAS  Google Scholar 

  28. Yusupova, G.Z., Yusupov, M.M., Cate, J.H. & Noller, H.F. The path of messenger RNA through the ribosome. Cell 106, 233–241 (2001).

    Article  CAS  Google Scholar 

  29. Valegard, K., Murray, J.B., Stockley, P.G., Stonehouse, N.J. & Liljas, L. Crystal structure of an RNA bacteriophage coat protein–operator complex. Nature 371, 623–626 (1994).

    Article  CAS  Google Scholar 

  30. Oubridge, C., Ito, N., Evans, P.R., Teo, C.H. & Nagai, K. Crystal structure at 1.92 Å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372, 432–438 (1994).

    Article  CAS  Google Scholar 

  31. Allain, F.H. et al. Specificity of ribonucleoprotein interaction determined by RNA folding during complex formulation. Nature 380, 646–650 (1996).

    Article  CAS  Google Scholar 

  32. Rould, M.A., Perona, J.J. & Steitz, T.A. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature 352, 213–218 (1991).

    Article  CAS  Google Scholar 

  33. Cavarelli, J., Rees, B., Ruff, M., Thierry, J.C. & Moras, D. Yeast tRNA(Asp) recognition by its cognate class II aminoacyl-tRNA synthetase. Nature 362, 181–184 (1993).

    Article  CAS  Google Scholar 

  34. Cusack, S., Yaremchuk, A., Krikliviy, I. & Tukalo, M. tRNA(Pro) anticodon recognition by Thermus thermophilus prolyl-tRNA synthetase. Structure 6, 101–108 (1998).

    Article  CAS  Google Scholar 

  35. Kromayer, M., Neuhierl, B., Friebel, A. & Bock, A. Genetic probing of the interaction between the translation factor SelB and its mRNA binding element in Escherichia coli. Mol. Gen. Genet. 262, 800–806 (1999).

    Article  CAS  Google Scholar 

  36. Klug, S.J., Huttenhofer, A., Kromayer, M. & Famulok, M. In vitro and in vivo characterization of novel mRNA motifs that bind special elongation factor SelB. Proc. Natl. Acad. Sci. USA 94, 6676–6681 (1997).

    Article  CAS  Google Scholar 

  37. Smith, D.B. & Johnson, K.S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31–40 (1988).

    Article  CAS  Google Scholar 

  38. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  39. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  40. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  41. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the locations of errors in these methods. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  42. Laskowski, R., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the streochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  43. Blanchard, S.C., Fourmy, D., Eason, R.G. & Puglisi, J.D. rRNA chemical groups required for aminoglycoside binding. Biochemistry 37, 7716–7724 (1998).

    Article  CAS  Google Scholar 

  44. Stern, S., Moazed, D. & Noller, H.F. Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol. 164, 481–489 (1988).

    Article  CAS  Google Scholar 

  45. Schwartz, T., Behlke, J., Lowenhaupt, K., Heinemann, U. & Rich, A. Structure of the DLM-1–Z-DNA complex reveals a conserved family of Z-DNA-binding proteins. Nat. Struct. Biol. 8, 761–765 (2001).

    Article  CAS  Google Scholar 

  46. Wimberly, B.T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Kawamoto, H. Sakai and K. Miura for assistance in data collection at SPring-8. This work was supported by the joint program JSPS-CNRS to S.Y. and K.M. and the French national program GEOMEX to S.Y. and D.F. K.M. and D.K. were supported in part by the Ministry of Education, Science, Sports, Culture and Technology of Japan, and the Protein 3000 project. L.R. was supported by a Japan Society for the Promotion of Science postdoctoral fellowship for foreign researchers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satoko Yoshizawa or Katsumi Maenaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Crystal packing of SelB-M–RNA complexes. (PDF 249 kb)

Supplementary Fig. 2

Structure-based sequence alignment of bacterial SelB mRNA-binding domains. (PDF 464 kb)

Supplementary Fig. 3

Protein-RNA interactions in the SelB-M–SECIS RNA complex. (PDF 343 kb)

Supplementary Fig. 4

Overview of the protein-RNA loop interactions. (PDF 1859 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshizawa, S., Rasubala, L., Ose, T. et al. Structural basis for mRNA recognition by elongation factor SelB. Nat Struct Mol Biol 12, 198–203 (2005). https://doi.org/10.1038/nsmb890

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb890

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing