Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surface charge and hydrophobicity determine ErbB2 binding to the Hsp90 chaperone complex

Abstract

The molecular chaperone Hsp90 modulates the function of specific cell signaling proteins. Although targeting Hsp90 with the antibiotic inhibitor geldanamycin (GA) may be a promising approach for cancer treatment, little is known about the determinants of Hsp90 interaction with its client proteins. Here we identify a loop within the N lobe of the kinase domain of ErbB2 that determines Hsp90 binding. The amino acid sequence of the loop determines the electrostatic and hydrophobic character of the protein's surface, which in turn govern interaction with Hsp90. A point mutation within the loop that alters ErbB2 surface properties disrupts Hsp90 association and confers GA resistance. Notably, the immature ErbB2 point mutant remains sensitive to GA, suggesting that mature and nascent client kinases may use distinct motifs to interact with the Hsp90 chaperone complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sensitivities of ErbB2 deletion mutants to GA-induced degradation and their binding to Hsp90.
Figure 2: ErbB2-5M is incapable of binding the Hsp90 complex and is resistant to GA-induced degradation.
Figure 3: Surface features of the kinase domains of the wild-type and mutant ErbB1 and ErbB2 proteins.
Figure 4: Single point mutations in the chaperone-interacting loop alter GA sensitivity and binding of the Hsp90 complex to both ErbB1 and ErbB2.
Figure 5: Nascent and mature ErbB2-5M proteins show disparate GA sensitivities.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Pratt, W.B. & Toft, D.O. Regulation of signaling protein function and trafficking by the Hsp90/Hsp70-based chaperone machinery. Exp. Biol. Med. 228, 111–133 (2003).

    Article  CAS  Google Scholar 

  2. Hernandez, M.P., Sullivan, W.P. & Toft, D.O. The assembly and intermolecular properties of the Hsp70–Hop–Hsp90 molecular chaperone complex. J. Biol. Chem. 277, 38294–38304 (2002).

    Article  CAS  Google Scholar 

  3. Murphy, P.J. et al. Visualization and mechanism of assembly of a glucocorticoid receptor. Hsp70 complex that is primed for subsequent Hsp90-dependent opening of the steroid binding cleft. J. Biol. Chem. 278, 34764–34773 (2003).

    Article  CAS  Google Scholar 

  4. McLaughlin, S.H., Smith, H.W. & Jackson, S.E. Stimulation of the weak ATPase activity of human Hsp90 by a client protein. J. Mol. Biol. 315, 787–798 (2002).

    Article  CAS  Google Scholar 

  5. Panaretou, B. et al. Activation of the ATPase activity of Hsp90 by the stress-regulated cochaperone aha1. Mol. Cell 10, 1307–1318 (2002).

    Article  CAS  Google Scholar 

  6. Grenert, J.P. et al. The amino-terminal domain of heat shock protein 90 (Hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates Hsp90 conformation. J. Biol. Chem. 272, 23843–23850 (1997).

    Article  CAS  Google Scholar 

  7. Stebbins, C.E. et al. Crystal structure of an Hsp90–geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89, 239–250 (1997).

    Article  CAS  Google Scholar 

  8. Zhang, W. et al. Biochemical and structural studies of the interaction of cdc37 with Hsp90. J. Mol. Biol. 340, 891–907 (2004).

    Article  CAS  Google Scholar 

  9. Sato, S., Fujita, N. & Tsuruo, T. Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl. Acad. Sci. USA 97, 10832–10837 (2000).

    Article  CAS  Google Scholar 

  10. Siligardi, G. et al. Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37. J. Biol. Chem. 277, 20151–20159 (2002).

    Article  CAS  Google Scholar 

  11. Shao, J., Irwin, A., Hartson, S.D. & Matts, R.L. Functional dissection of cdc37: characterization of domain structure and amino acid residues critical for protein kinase binding. Biochemistry 42, 12577–12588 (2003).

    Article  CAS  Google Scholar 

  12. Zhao, Q., Boschelli, F., Caplan, A.J. & Arndt, K.T. Identification of a conserved sequence motif that promotes Cdc37 and cyclin D1 binding to Cdk4. J. Biol. Chem. 279, 12560–12564 (2004).

    Article  CAS  Google Scholar 

  13. Mimnaugh, E.G., Chavany, C. & Neckers, L. Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J. Biol. Chem. 271, 22796–22801 (1996).

    Article  CAS  Google Scholar 

  14. Tikhomirov, O. & Carpenter, G. Geldanamycin induces ErbB-2 degradation by proteolytic fragmentation. J. Biol. Chem. 275, 26625–26631 (2000).

    Article  CAS  Google Scholar 

  15. Citri, A. et al. Drug-induced ubiquitylation and degradation of ErbB receptor tyrosine kinases: implications for cancer therapy. EMBO J. 21, 2407–2417 (2002).

    Article  CAS  Google Scholar 

  16. Xu, W. et al. Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J. Biol. Chem. 276, 3702–3708 (2001).

    Article  CAS  Google Scholar 

  17. Slamon, D.J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    Article  CAS  Google Scholar 

  18. Anreder, M.B., Freeman, S.M., Merogi, A., Halabi, S. & Marrogi, A.J. p53, c-erbB2, and PCNA status in benign, proliferative and malignant ovarian surface epithelial neoplasms: a study of 75 cases. Arch. Pathol. Lab. Med. 123, 310–316 (1999).

    CAS  PubMed  Google Scholar 

  19. Suda, Y. et al. Induction of a variety of tumors by c-erbB2 and clonal nature of lymphomas even with the mutated gene (Val659→Glu659). EMBO J. 9, 181–190 (1990).

    Article  CAS  Google Scholar 

  20. Craft, N., Shostak, Y., Carey, M. & Sawyers, C.L. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat. Med. 5, 280–285 (1999).

    Article  CAS  Google Scholar 

  21. Yu, D.H. & Hung, M.C. Expression of activated rat neu oncogene is sufficient to induce experimental metastasis in 3T3 cells. Oncogene 6, 1991–1996 (1991).

    CAS  PubMed  Google Scholar 

  22. Kumar, R. & Yarmand-Bagheri, R. The role of HER2 in angiogenesis. Semin. Oncol. 28, 27–32 (2001).

    Article  CAS  Google Scholar 

  23. Liu, S. et al. Genetic instability favoring transversions associated with ErbB2-induced mammary tumorigenesis. Proc. Natl. Acad. Sci. USA 99, 3770–3775 (2002).

    Article  CAS  Google Scholar 

  24. Dowsett, M. Overexpression of HER-2 as a resistance mechanism to hormonal therapy for breast cancer. Endocr. Relat. Cancer 8, 191–195 (2001).

    Article  CAS  Google Scholar 

  25. Muthuswamy, S.K., Gilman, M. & Brugge, J.S. Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol. Cell. Biol. 19, 6845–6857 (1999).

    Article  CAS  Google Scholar 

  26. Miller, P. et al. Depletion of the erbB-2 gene product p185 by benzoquinoid ansamycins. Cancer Res. 54, 2724–2730 (1994).

    CAS  PubMed  Google Scholar 

  27. An, W.G., Schulte, T.W. & Neckers, L.M. The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ. 11, 355–360 (2000).

    CAS  PubMed  Google Scholar 

  28. Tikhomirov, O. & Carpenter, G. Identification of ErbB-2 kinase domain motifs required for geldanamycin-induced degradation. Cancer Res. 63, 39–43 (2003).

    CAS  PubMed  Google Scholar 

  29. Hartmann-Petersen, R., Seeger, M. & Gordon, C. Transferring substrates to the 26S proteasome. Trends Biochem. Sci. 28, 26–31 (2003).

    Article  CAS  Google Scholar 

  30. Stamos, J., Sliwkowski, M.X. & Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277, 46265–46272 (2002).

    Article  CAS  Google Scholar 

  31. Xu, W., Mimnaugh, E.G., Kim, J.S., Trepel, J.B. & Neckers, L.M. Hsp90, not Grp94, regulates the intracellular trafficking and stability of nascent ErbB2. Cell Stress Chaperones 7, 91–96 (2002).

    Article  CAS  Google Scholar 

  32. Isaacs, J.S., Xu, W. & Neckers, L. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 3, 213–217 (2003).

    Article  CAS  Google Scholar 

  33. Meyer, P. et al. Structural and functional analysis of the middle segment of Hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol. Cell 11, 647–658 (2003).

    Article  CAS  Google Scholar 

  34. Scroggins, B.T. et al. High affinity binding of Hsp90 is triggered by multiple discrete segments of its kinase clients. Biochemistry 42, 12550–12561 (2003).

    Article  CAS  Google Scholar 

  35. Miyata, Y. & Nishida, E. CK2 controls multiple protein kinases by phosphorylating a kinase-targeting molecular chaperone, Cdc37. Mol. Cell. Biol. 24, 4065–4074 (2004).

    Article  CAS  Google Scholar 

  36. Shao, J., Prince, T., Hartson, S.D. & Matts, R.L. Phosphorylation of serine 13 is required for the proper function of the Hsp90 co-chaperone, Cdc37. J. Biol. Chem. 278, 38117–38120 (2003).

    Article  CAS  Google Scholar 

  37. Chavany, C. et al. p185erbB2 binds to GRP94 in vivo. Dissociation of the p185erbB2/GRP94 heterocomplex by benzoquinone ansamycins precedes depletion of p185erbB2. J. Biol. Chem. 271, 4974–4977 (1996).

    Article  CAS  Google Scholar 

  38. Tang, C.L. et al. On the role of structural information in remote homology detection and sequence alignment: new methods using hybrid sequence profiles. J. Mol. Biol. 334, 1043–1062 (2003).

    Article  CAS  Google Scholar 

  39. Xiang, Z. & Honig, B. Extending the accuracy limits of prediction for side-chain conformations. J. Mol. Biol. 311, 421–430 (2001).

    Article  CAS  Google Scholar 

  40. Xiang, Z., Soto, C.S. & Honig, B. Evaluating conformational free energies: the colony energy and its application to the problem of loop prediction. Proc. Natl. Acad. Sci. USA 99, 7432–7437 (2002).

    Article  CAS  Google Scholar 

  41. Yang, A.S. & Honig, B. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments. J. Mol. Biol. 301, 691–711 (2000).

    Article  CAS  Google Scholar 

  42. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Len Neckers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Alignment of the amino acid sequence of ErbB1 and ErbB2 kinase domain regions. (PDF 383 kb)

Supplementary Fig. 2

Ribbon diagram of the superimposed kinase domains of ErbB1 and ErbB2. (PDF 1233 kb)

Supplementary Fig. 3

Structure of the M5 loop of ErbB1, ErbB2 and ErbB2-G778N, showing the two trapped water molecules. (PDF 948 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Yuan, X., Xiang, Z. et al. Surface charge and hydrophobicity determine ErbB2 binding to the Hsp90 chaperone complex. Nat Struct Mol Biol 12, 120–126 (2005). https://doi.org/10.1038/nsmb885

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb885

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing