Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Side chain and backbone contributions of Phe508 to CFTR folding

Abstract

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an integral membrane protein, cause cystic fibrosis (CF). The most common CF-causing mutant, deletion of Phe508, fails to properly fold. To elucidate the role Phe508 plays in the folding of CFTR, missense mutations at this position were generated. Only one missense mutation had a pronounced effect on the stability and folding of the isolated domain in vitro. In contrast, many substitutions, including those of charged and bulky residues, disrupted folding of full-length CFTR in cells. Structures of two mutant nucleotide-binding domains (NBDs) reveal only local alterations of the surface near position 508. These results suggest that the peptide backbone plays a role in the proper folding of the domain, whereas the side chain plays a role in defining a surface of NBD1 that potentially interacts with other domains during the maturation of intact CFTR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NBD1 folding efficiency as a function of folding temperature.
Figure 2: Structure of NBD1 proteins.
Figure 3: Maturation of full-length CFTR mutants.
Figure 4: ABC transporter structure and CFTR biogenesis.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Sheppard, D.N. & Welsh, M.J. Structure and function of the CFTR chloride channel. Physiol. Rev. 79, S23–S45 (1999).

    Article  CAS  Google Scholar 

  2. Riordan, J.R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073 (1989).

    Article  CAS  Google Scholar 

  3. Tsui, L.C. The spectrum of cystic fibrosis mutations. Trends Genet. 8, 392–398 (1992).

    Article  CAS  Google Scholar 

  4. Tsui, L.C. The cystic fibrosis transmembrane conductance regulator gene. Am. J. Respir. Crit. Care Med. 151, S47–S53 (1995).

    Article  CAS  Google Scholar 

  5. Cheng, S.H. et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827–834 (1990).

    Article  CAS  Google Scholar 

  6. Lukacs, G.L. et al. Conformational maturation of CFTR but not its mutant counterpart (ΔF508) occurs in the endoplasmic reticulum and requires ATP. EMBO J. 13, 6076–6086 (1994).

    Article  CAS  Google Scholar 

  7. Denning, G.M., Ostedgaard, L.S. & Welsh, M.J. Abnormal localization of cystic fibrosis transmembrane conductance regulator in primary cultures of cystic fibrosis airway epithelia. J. Cell Biol. 118, 551–559 (1992).

    Article  CAS  Google Scholar 

  8. Sharma, M., Benharouga, M., Hu, W. & Lukacs, G.L. Conformational and temperature-sensitive stability defects of the ΔF508 cystic fibrosis transmembrane conductance regulator in post-endoplasmic reticulum compartments. J. Biol. Chem. 276, 8942–8950 (2001).

    Article  CAS  Google Scholar 

  9. Ward, C.L., Omura, S. & Kopito, R.R. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83, 121–127 (1995).

    Article  CAS  Google Scholar 

  10. Jensen, T.J. et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83, 129–135 (1995).

    Article  CAS  Google Scholar 

  11. Kartner, N., Augustinas, O., Jensen, T.J., Naismith, A.L. & Riordan, J.R. Mislocalization of ΔF508 CFTR in cystic fibrosis sweat gland. Nat. Genet. 1, 321–327 (1992).

    Article  CAS  Google Scholar 

  12. Zhang, X.M. et al. Organic solutes rescue the functional defect in F508 CFTR. J. Biol. Chem. 278, 51232–51242 (2003).

    Article  CAS  Google Scholar 

  13. Denning, G.M. et al. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358, 761–764 (1992).

    Article  CAS  Google Scholar 

  14. Sato, S., Ward, C.L., Krouse, M.E., Wine, J.J. & Kopito, R.R. Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J. Biol. Chem. 271, 635–638 (1996).

    Article  CAS  Google Scholar 

  15. Yang, H. et al. Nanomolar affinity small molecule correctors of defective ΔF508-CFTR chloride channel gating. J. Biol. Chem. 278, 35079–35085 (2003).

    Article  CAS  Google Scholar 

  16. Brown, C.R., Hong-Brown, L.Q., Biwersi, J., Verkman, A.S. & Welch, W.J. Chemical chaperones correct the mutant phenotype of the ΔF508 cystic fibrosis transmembrane conductance regulator protein. Cell Stress Chaperones 1, 117–125 (1996).

    Article  CAS  Google Scholar 

  17. Dormer, R.L. et al. Correction of delF508-CFTR activity with benzo(c)quinolizinium compounds through facilitation of its processing in cystic fibrosis airway cells. J. Cell Sci. 114, 4073–4081 (2001).

    CAS  PubMed  Google Scholar 

  18. Howard, M. et al. Mammalian osmolytes and S-nitrosoglutathione promote ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) protein maturation and function. J. Biol. Chem. 278, 35159–35167 (2003).

    Article  CAS  Google Scholar 

  19. Thomas, P.J., Ko, Y.H. & Pedersen, P.L. Altered protein folding may be the molecular basis of most cases of cystic fibrosis. FEBS Lett. 312, 7–9 (1992).

    Article  CAS  Google Scholar 

  20. Zeitlin, P.L. Therapies directed at the basic defect in cystic fibrosis. Clin. Chest Med. 19, 515–525 (1998).

    Article  CAS  Google Scholar 

  21. Locher, K.P., Lee, A.T. & Rees, D.C. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091–1098 (2002).

    Article  CAS  Google Scholar 

  22. Chang, G. Structure of MsbA from Vibrio cholera: a multidrug resistance ABC transporter homolog in a closed conformation. J. Mol. Biol. 330, 419–430 (2003).

    Article  CAS  Google Scholar 

  23. Qu, B.H., Strickland, E.H. & Thomas, P.J. Localization and suppression of a kinetic defect in cystic fibrosis transmembrane conductance regulator folding. J. Biol. Chem. 272, 15739–15744 (1997).

    Article  CAS  Google Scholar 

  24. Qu, B.H. & Thomas, P.J. Alteration of the cystic fibrosis transmembrane conductance regulator folding pathway. J. Biol. Chem. 271, 7261–7264 (1996).

    Article  CAS  Google Scholar 

  25. Myers, J.K., Pace, C.N. & Scholtz, J.M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 4, 2138–2148 (1995).

    Article  CAS  Google Scholar 

  26. Lewis, H.A. et al. Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. EMBO J. 23, 282–293 (2004).

    Article  CAS  Google Scholar 

  27. Karpowich, N. et al. Crystal structures of the MJ1267 ATP binding cassette reveal an induced-fit effect at the ATPase active site of an ABC transporter. Structure 9, 571–586 (2001).

    Article  CAS  Google Scholar 

  28. Chen, W., Helenius, J., Braakman, I. & Helenius, A. Cotranslational folding and calnexin binding during glycoprotein synthesis. Proc. Natl. Acad. Sci. USA 92, 6229–6233 (1995).

    Article  CAS  Google Scholar 

  29. Jansens, A., van Duijn, E. & Braakman, I. Coordinated nonvectorial folding in a newly synthesized multidomain protein. Science 298, 2401–2403 (2002).

    Article  CAS  Google Scholar 

  30. Du, K., Sharma, L. & Lukacs, G.L. The ΔF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Nat. Struct. Mol. Biol. 12, 17–25 (2005).

    Article  CAS  Google Scholar 

  31. Yuan, Y.R. et al. The crystal structure of the MJ0796 ATP-binding cassette. Implications for the structural consequences of ATP hydrolysis in the active site of an ABC transporter. J. Biol. Chem. 276, 32313–32321 (2001).

    Article  CAS  Google Scholar 

  32. Gaudet, R. & Wiley, D.C. Structure of the ABC ATPase domain of human TAP1, the transporter associated with antigen processing. EMBO J. 20, 4964–4972 (2001).

    Article  CAS  Google Scholar 

  33. Ames, G.F. et al. Purification and characterization of the membrane-bound complex of an ABC transporter, the histidine permease. J. Bioenerg. Biomembr. 33, 79–92 (2001).

    Article  CAS  Google Scholar 

  34. Liu, P.Q. & Ames, G.F. In vitro disassembly and reassembly of an ABC transporter, the histidine permease. Proc. Natl. Acad. Sci. USA 95, 3495–3500 (1998).

    Article  CAS  Google Scholar 

  35. Mourez, M., Hofnung, M. & Dassa, E. Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits. EMBO J. 16, 3066–3077 (1997).

    Article  CAS  Google Scholar 

  36. Wilken, S., Schmees, G. & Schneider, E. A putative helical domain in the MalK subunit of the ATP-binding-cassette transport system for maltose of Salmonella typhimurium (MalFGK2) is crucial for interaction with MalF and MalG. A study using the LacK protein of Agrobacterium radiobacter as a tool. Mol. Microbiol. 22, 655–666 (1996).

    Article  CAS  Google Scholar 

  37. Tector, M. & Hartl, F.U. An unstable transmembrane segment in the cystic fibrosis transmembrane conductance regulator. EMBO J. 18, 6290–6298 (1999).

    Article  CAS  Google Scholar 

  38. Chen, E.Y., Bartlett, M.C., Loo, T.W. & Clarke, D.M. The ΔF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 279, 39620–39627 (2004).

    Article  CAS  Google Scholar 

  39. Loo, T.W., Bartlett, M.C. & Clarke, D.M. Introduction of the most common cystic fibrosis mutation (ΔF508) into human P-glycoprotein disrupts packing of the transmembrane segments. J. Biol. Chem. 277, 27585–27588 (2002).

    Article  CAS  Google Scholar 

  40. Meacham, G.C. et al. The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J. 18, 1492–1505 (1999).

    Article  CAS  Google Scholar 

  41. Xiong, X., Bragin, A., Widdicombe, J.H., Cohn, J. & Skach, W.R. Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator. J. Clin. Invest 100, 1079–1088 (1997).

    Article  CAS  Google Scholar 

  42. Sato, S., Ward, C.L. & Kopito, R.R. Cotranslational ubiquitination of cystic fibrosis transmembrane conductance regulator in vitro. J. Biol. Chem. 273, 7189–7192 (1998).

    Article  CAS  Google Scholar 

  43. Miller, S.R., Sekijima, Y. & Kelly, J.W. Native state stabilization by NSAIDs inhibits transthyretin amyloidogenesis from the most common familial disease variants. Lab Invest. 84, 545–552 (2004).

    Article  CAS  Google Scholar 

  44. Fan, J.Q., Ishii, S., Asano, N. & Suzuki, Y. Accelerated transport and maturation of lysosomal α-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat. Med. 5, 112–115 (1999).

    Article  CAS  Google Scholar 

  45. Pace, C.N. & Shaw, K.L. Linear extrapolation method of analyzing solvent denaturation curves. Proteins, Suppl 4, 1–7 (2000).

  46. Mossessova, E. & Lima, C.D. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865–876 (2000).

    Article  CAS  Google Scholar 

  47. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  48. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  49. McRee, D.E. A visual protein crystallographic software system for X11/Xview. J. Mol. Graph. 10, 44–46 (1992).

    Article  Google Scholar 

  50. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  51. Lewis, H.A. et al. Impact of the Δ508 mutation in NBD1 of human CFTR on domain folding and structure. J. Biol. Chem. Epub ahead of print, 3 November 2004 (doi:10.1074/jbc.M410968200).

Download references

Acknowledgements

We thank H. Lewis and M. Kearins for helpful advice regarding production of the two NBD1 crystal forms and members of the Thomas lab and the Structural Biology Lab for helpful suggestions and constructive criticism. This work was supported by grants from the US National Institutes of Health (NIH) (DK49835), the Cystic Fibrosis Foundation (THOMAS01GO) and Welch Foundation (I-1284) to P.J.T. and by a position on the NIH Training Grant, Mechanisms of Drug Action and Disposition (GM07062), awarded to P.H.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J Thomas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Mutant NBD1 structures and conformations. (PDF 886 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thibodeau, P., Brautigam, C., Machius, M. et al. Side chain and backbone contributions of Phe508 to CFTR folding. Nat Struct Mol Biol 12, 10–16 (2005). https://doi.org/10.1038/nsmb881

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb881

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing