Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural characterization of a type III secretion system filament protein in complex with its chaperone

Abstract

The type III secretion system (TTSS) mediates the specific translocation of bacterial proteins into the cytoplasm of eukaryotic cells, a process essential for the virulence of many Gram-negative pathogens. The enteropathogenic Escherichia coli TTSS protein EspA forms a hollow extracellular filament believed to be a molecular conduit for type III protein translocation. Structural analysis of EspA has been hampered by its polymeric nature. We show that EspA alone is sufficient to form filamentous structures in the absence of other pathogenicity island–encoded proteins. CesA is the recently proposed chaperone of EspA, and we demonstrate that CesA traps EspA in a monomeric state and inhibits its polymerization. Crystallographic analysis of the heterodimeric CesA–EspA complex at a resolution of 2.8 Å reveals that EspA contains two long a-helices, which are involved in extensive coiled-coil interactions with CesA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CesA is dimeric and helical.
Figure 2: Purified EspA exists as filamentous oligomers.
Figure 3: CesA traps the EspA monomer.
Figure 4: Overall structure of the CesA–EspA complex in comparison with other secretion chaperones.
Figure 5: Interaction interface between CesA and EspA.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hueck, C.J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Galan, J.E. & Collmer, A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 1322–1328 (1999).

    CAS  PubMed  Google Scholar 

  3. Stebbins, C.E. & Galan, J.E. Structural mimicry in bacterial virulence. Nature 412, 701–705 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Blocker, A. et al. Structure and composition of the Shigella flexneri 'needle complex,' a part of its type III secreton. Mol. Microbiol. 39, 652–663 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Kubori, T. et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Daniell, S.J. et al. The filamentous type III secretion translocon of enteropathogenic Escherichia coli. Cell. Microbiol. 3, 865–871 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Aizawa, S.I. Bacterial flagella and type III secretion systems. FEMS Microbiol. Lett. 202, 157–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Cornelis, G.R. & Wolf-Watz, H. The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol. Microbiol. 23, 861–867 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Vallance, B.A. & Finlay, B.B. Exploitation of host cells by enteropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 8799–8806 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Knutton, S. et al. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17, 2166–2176 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lai, L.C., Wainwright, L.A., Stone, K.D. & Donnenberg, M.S. A third secreted protein that is encoded by the enteropathogenic Escherichia coli pathogenicity island is required for transduction of signals and for attaching and effacing activities in host cells. Infect. Immun. 65, 2211–2217 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sekiya, K. et al. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc. Natl. Acad. Sci. USA 98, 11638–11643 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ide, T. et al. Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell. Microbiol. 3, 669–679 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Daniell, S.J. et al. 3D structure of EspA filaments from enteropathogenic Escherichia coli. Mol. Microbiol. 49, 301–308 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Creasey, E.A. et al. CesAB is an enteropathogenic Escherichia coli chaperone for the type-III translocator proteins EspA and EspB. Microbiology 149, 3639–3647 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Feldman, M.F. & Cornelis, G.R. The multitalented type III chaperones: all you can do with 15 kDa. FEMS Microbiol. Lett. 219, 151–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Parsot, C., Hamiaux, C. & Page, A.L. The various and varying roles of specific chaperones in type III secretion systems. Curr. Opin. Microbiol. 6, 7–14 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Roe, A.J. et al. Heterogeneous surface expression of EspA translocon filaments by Escherichia coli O157:H7 is controlled at the posttranscriptional level. Infect. Immun. 71, 5900–5909 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luo, Y. et al. Structural and biochemical characterization of the type III secretion chaperones CesT and SigE. Nat. Struct. Biol. 8, 1031–1036 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Stebbins, C.E. & Galan, J.E. Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414, 77–81 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Birtalan, S.C., Phillips, R.M. & Ghosh, P. Three-dimensional secretion signals in chaperone–effector complexes of bacterial pathogens. Mol. Cell 9, 971–980 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Pallen, M.J., Dougan, G. & Frankel, G. Coiled coil domains in proteins secreted by type III secretion systems. Mol. Microbiol. 25, 423–425 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Delahay, R.M. & Frankel, G. Coiled coil proteins associated with type III secretion systems: a versatile domain revisited. Mol. Microbiol. 45, 905–916 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Zurawski, D.V. & Stein, M.A. The SPI2-encoded SseA chaperone has discrete domains required for SseB stabilization and export, and binds within the C-terminus of SseB and SseD. Microbiology 150, 2055–2068 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Auvray, F., Thomas, J., Fraser, G.M. & Hughes, C. Flagellin polymerisation control by a cytosolic export chaperone. J. Mol. Biol. 308, 221–229 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Evdokimov, A.G. et al. Similar modes of polypeptide recognition by export chaperones in flagellar biosynthesis and type III secretion. Nat. Struct. Biol. 10, 789–793 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Delahay, R.M. et al. The coiled coil domain of EspA is essential for the assembly of the type III secretion translocon on the surface of enteropathogenic Escherichia coli. J. Biol. Chem. 274, 35969–35974 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Samatey, F.A. et al. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410, 331–337 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Yonekura, K., Maki-Yonekura, S. & Namba, K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424, 643–650 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Namba, K., Yamashita, I. & Vonderviszt, F. Structure of the core and central channel of bacterial flagella. Nature 342, 648–654 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Cordes, F.S. et al. Helical structure of the needle of the type III secretion system of Shigella flexneri. J. Biol. Chem. 278, 17103–17107 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Leslie, A.G.W. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography Vol. 26 (Daresbury Laboratory, Warrington, UK, 1992).

    Google Scholar 

  34. Evans, P.R. Data reduction. Proceedings of the CCP4 Study Weekend on Data Collection & Processing (eds. Sawyer, L., Isaacs, N. & Bailey, S.) 114–122 (Daresbury Laboratory, Warrington, UK, 1993).

    Google Scholar 

  35. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McRee, D.E. XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

  40. Merritt, E.A.B. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A.L. Lovering, M.G. Bertero, D. Lim, and P.I. Lario for assistance in data collection and analyses, R.A. Pfuetzner for assistance in multiangle light scattering, S. He for mass spectrometry service, G. Martens and E. Humphries for assistance in transmission EM, N.A. Thomas and W. Deng for advice and support and F. Rosell for assistance in CD spectroscopy. We thank the US Department of Energy and the staff at the Advanced Light Source beamline 8.2.2 for access and assistance in data collection. C.K. Yip is supported by training awards from the Natural Sciences and Engineering Research Council of Canada and the Michael Smith Foundation for Health Research. N.C.J. Strynadka thanks the Canadian Institutes of Health Research, Howard Hughes Medical Institute and Canadian Bacterial Diseases Network for financial support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie C J Strynadka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Electron density map. (PDF 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yip, C., Finlay, B. & Strynadka, N. Structural characterization of a type III secretion system filament protein in complex with its chaperone. Nat Struct Mol Biol 12, 75–81 (2005). https://doi.org/10.1038/nsmb879

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb879

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing