Article | Published:

Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection

Nature Structural & Molecular Biology volume 12, pages 6774 (2005) | Download Citation

Subjects

Abstract

The conjugation of small ubiquitin-like modifiers SUMO-1, SUMO-2 and SUMO-3 onto target proteins requires the concerted action of the specific E1-activating enzyme SAE1/SAE2, the E2-conjugating enzyme Ubc9, and an E3-like SUMO ligase. NMR chemical shift perturbation was used to identify the surface of Ubc9 that interacts with the SUMO ligase RanBP2. Unlike known ubiquitin E2-E3 interactions, RanBP2 binds to the β-sheet of Ubc9. Mutational disruption of Ubc9-RanBP2 binding affected SUMO-2 but not SUMO-1 conjugation to Sp100 and to a newly identified RanBP2 substrate, PML. RanBP2 contains a binding site specific for SUMO-1 but not SUMO-2, indicating that a Ubc9–SUMO-1 thioester could be recruited to RanBP2 via SUMO-1 in the absence of strong binding between Ubc9 and RanBP2. Thus we show that E2-E3 interactions are not conserved across the ubiquitin-like protein superfamily and identify a RanBP2-dependent mechanism for SUMO paralog–specific conjugation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275, 6252–6258 (2000).

  2. 2.

    et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368–35374 (2001).

  3. 3.

    & Ubiquitin and ubiquitin-like modifiers: conserved mechanisms and diverse functions. Chemtracts Biochem. Mol. Biol. 16, 759–782 (2003).

  4. 4.

    & Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell. Biol. 4, 690–699 (2003).

  5. 5.

    , & SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem. Sci. 28, 612–618 (2003).

  6. 6.

    & The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

  7. 7.

    & An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106, 735–744 (2001).

  8. 8.

    , & A novel factor required for the SUMO1/Smt3 conjugation of yeast septins. Gene 275, 223–231 (2001).

  9. 9.

    , , & PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol. Cell. Biol. 22, 5222–5234 (2002).

  10. 10.

    & PIAS1 and PIASxα function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. J. Biol. Chem. 277, 41311–41317 (2002).

  11. 11.

    et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286, 1321–1326 (1999).

  12. 12.

    , , & Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533–539 (2000).

  13. 13.

    , , , & The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109–120 (2002).

  14. 14.

    et al. The binding interface between an E2 (UBC9) and a ubiquitin homologue (UBL1). J. Biol. Chem. 274, 16979–16987 (1999).

  15. 15.

    , , , & Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat. Struct. Biol. 10, 250–255 (2003).

  16. 16.

    et al. Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation. Biochemistry 42, 9959–9969 (2003).

  17. 17.

    et al. A giant nucleopore protein that binds Ran/TC4. Nature 376, 184–188 (1995).

  18. 18.

    , , , & The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type. Nat. Struct. Mol. Biol. 11, 984–991 (2004).

  19. 19.

    The ubiquitin-conjugation system. Annu. Rev. Genet. 26, 179–207 (1992).

  20. 20.

    , , , & Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J. Biol. Chem. 277, 47938–47945 (2002).

  21. 21.

    , & Perturbation of SUMOlation enzyme Ubc9 by distinct domain within nucleoporin RanBP2/Nup358. J. Biol. Chem. 277, 4755–4763 (2002).

  22. 22.

    , , , & Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. USA 101, 14373–14378 (2004).

  23. 23.

    , , & A RING finger ubiquitin ligase is protected from autocatalyzed ubiquitination and degradation by binding to ubiquitin-specific protease USP7. J. Biol. Chem. 279, 38160–38168 (2004).

  24. 24.

    , , , & Stabilization of the E3 ubiquitin ligase Nrdp1 by the deubiquitinating enzyme USP8. Mol. Cell. Biol. 24, 7748–7757 (2004).

  25. 25.

    , , , & Protein interactions within the N-end rule ubiquitin ligation pathway. J. Biol. Chem. 278, 9448–9457 (2003).

  26. 26.

    et al. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev. 15, 3088–3103 (2001).

  27. 27.

    , & Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett. 417, 297–300 (1997).

  28. 28.

    , & Domain organization of IκBα and sites of interaction with NF-κB p65. Mol. Cell. Biol. 15, 2166–2172 (1995).

  29. 29.

    Impact of transverse relaxation optimized spectroscopy (TROSY) on NMR as a technique in structural biology. Q. Rev. Biophys. 33, 161–197 (2000).

  30. 30.

    , & Structure of ubiquitin-conjugating enzyme 9 displays significant differences with other ubiquitin-conjugating enzymes which may reflect its specificity for sumo rather than ubiquitin. Acta Crystallogr. D. 54, 891–898 (1998).

  31. 31.

    , , , & Crystal structure of murine/human Ubc9 provides insight into the variability of the ubiquitin-conjugating system. J. Biol. Chem. 272, 21381–21387 (1997).

Download references

Acknowledgements

We thank G. Kemp (University of St. Andrews) for help with RanBP2 binding studies. This work was supported by the UK Medical Research Council, the Association for International Cancer Research (M.H.T. and R.T.H.) and US National Institutes of Health grant numbers GM 59887 and CA 94595 (Y.C.).

Author information

Author notes

    • Suhkmann Kim

    Present address: Department of Physics, Pusan National University, Pusan 609–735, Korea.

Affiliations

  1. Centre for Biomolecular Sciences, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK.

    • Michael H Tatham
    • , Ellis Jaffray
    •  & Ronald T Hay
  2. Division of Immunology, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, California 91010, USA.

    • Suhkmann Kim
    • , Jing Song
    •  & Yuan Chen
  3. Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, California 91010, USA.

    • Jing Song

Authors

  1. Search for Michael H Tatham in:

  2. Search for Suhkmann Kim in:

  3. Search for Ellis Jaffray in:

  4. Search for Jing Song in:

  5. Search for Yuan Chen in:

  6. Search for Ronald T Hay in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Ronald T Hay.

Supplementary information

PDF files

  1. 1.

    Supplementary Fig. 1

    Gel filtration chromatographic analysis of RanBP2–Ubc9 mutant complexes.

  2. 2.

    Supplementary Fig. 2

    Gel filtration chromatographic analysis of RanBP2–SUMO complexes.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nsmb878

Further reading