Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of a phage Twort group I ribozyme–product complex

Abstract

Group I introns are catalytic RNAs capable of orchestrating two sequential phosphotransesterification reactions that result in self-splicing. To understand how the group I intron active site facilitates catalysis, we have solved the structure of an active ribozyme derived from the orf142-I2 intron from phage Twort bound to a four-nucleotide product RNA at a resolution of 3.6 Å. In addition to the three conserved domains characteristic of all group I introns, the Twort ribozyme has peripheral insertions characteristic of phage introns. These elements form a ring that completely envelops the active site, where a snug pocket for guanosine is formed by a series of stacked base triples. The structure of the active site reveals three potential binding sites for catalytic metals, and invokes a role for the 2′ hydroxyl of the guanosine substrate in organization of the active site for catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the Twort orf142-I2 ribozyme.
Figure 2: A kink in the exon.
Figure 3: The P7.1–P7.2 subdomain.
Figure 4: The guanosine-binding site.
Figure 5: Comparison of the Twort ribozyme (green) and Azoarcus intron (pink) active sites.
Figure 6: Metals in the active site.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147–157 (1982).

    Article  CAS  Google Scholar 

  2. Cate, J.H. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678–1685 (1996).

    Article  CAS  Google Scholar 

  3. Golden, B.L., Gooding, A.R., Podell, E.R. & Cech, T.R. A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science 282, 259–264 (1998).

    Article  CAS  Google Scholar 

  4. Juneau, K., Podell, E., Harrington, D.J. & Cech, T.R. Structural basis of the enhanced stability of a mutant ribozyme domain and a detailed view of RNA-solvent interactions. Structure 9, 221–231 (2001).

    Article  CAS  Google Scholar 

  5. Adams, P.L., Stahley, M.R., Kosek, A.B., Wang, J. & Strobel, S.A. Crystal structure of a self-splicing group I intron with both exons. Nature 430, 45–50 (2004).

    Article  CAS  Google Scholar 

  6. Guo, F., Gooding, A. & Cech, T.R. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Mol. Cell 16, 351–362 (2004).

    CAS  PubMed  Google Scholar 

  7. Michel, F., Hanna, M., Green, R., Bartel, D.P. & Szostak, J.W. The guanosine binding site of the Tetrahymena ribozyme. Nature 342, 391–395 (1989).

    Article  CAS  Google Scholar 

  8. Strobel, S.A. & Ortoleva-Donnelly, L. A hydrogen-bonding triad stabilizes the chemical transition state of a group I ribozyme. Chem. Biol. 6, 153–165 (1999).

    Article  CAS  Google Scholar 

  9. Shan, S., Kravchuk, A.V., Piccirilli, J.A. & Herschlag, D. Defining the catalytic metal ion interactions in the Tetrahymena ribozyme reaction. Biochemistry 40, 5161–5171 (2001).

    Article  CAS  Google Scholar 

  10. Szewczak, A.A., Kosek, A.B., Piccirilli, J.A. & Strobel, S.A. Identification of an active site ligand for a group I ribozyme catalytic metal ion. Biochemistry 41, 2516–2525 (2002).

    Article  CAS  Google Scholar 

  11. Cech, T.R. Self-splicing of group I introns. Annu. Rev. Biochem. 59, 543–68 (1990).

    Article  CAS  Google Scholar 

  12. Zaug, A.J., Been, M.D. & Cech, T.R. The Tetrahymena ribozyme acts like an RNA restriction endonuclease. Nature 324, 429–433 (1986).

    Article  CAS  Google Scholar 

  13. Zaug, A.J., Grosshans, C.A. & Cech, T.R. Sequence-specific endoribonuclease activity of the Tetrahymena ribozyme: enhanced cleavage of certain oligonucleotide substrates that form mismatched ribozyme-substrate complexes. Biochemistry 27, 8924–8931 (1988).

    Article  CAS  Google Scholar 

  14. Michel, F. & Westhof, E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J. Mol. Biol. 216, 585–610 (1990).

    Article  CAS  Google Scholar 

  15. Cech, T.R., Damberger, S.H. & Gutell, R.R. Representation of the secondary and tertiary structure of group I introns. Nat. Struct. Biol. 1, 273–280 (1994).

    Article  CAS  Google Scholar 

  16. Been, M.D. & Perrotta, A.T. Group I intron self-splicing with adenosine: evidence for a single nucleoside-binding site. Science 252, 434–437 (1991).

    Article  CAS  Google Scholar 

  17. Landthaler, M. & Shub, D.A. Unexpected abundance of self-splicing introns in the genome of bacteriophage Twort: introns in multiple genes, a single gene with three introns, and exon skipping by group I ribozymes. Proc. Natl. Acad. Sci. USA 96, 7005–7010 (1999).

    Article  CAS  Google Scholar 

  18. Landthaler, M., Begley, U., Lau, N.C. & Shub, D.A. Two self-splicing group I introns in the ribonucleotide reductase large subunit gene of Staphylococcus aureus phage Twort. Nucleic Acids Res. 30, 1935–1943 (2002).

    Article  CAS  Google Scholar 

  19. Zaug, A.J., Davila-Aponte, J.A. & Cech, T.R. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu). Biochemistry 33, 14935–14947 (1994).

    Article  CAS  Google Scholar 

  20. Belfort, M. Phage T4 introns: self-splicing and mobility. Annu. Rev. Genet. 24, 363–385 (1990).

    Article  CAS  Google Scholar 

  21. Rangan, P., Masquida, B., Westhof, E. & Woodson, S.A. Architecture and folding mechanism of the Azoarcus group I pre-tRNA. J. Mol. Biol. 339, 41–51 (2004).

    Article  CAS  Google Scholar 

  22. Leontis, N.B. & Westhof, E. A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs. J. Mol. Biol. 283, 571–583 (1998).

    Article  CAS  Google Scholar 

  23. Lu, M. & Steitz, T.A. Structure of Escherichia coli ribosomal protein L25 complexed with a 5S rRNA fragment at 1.8-Å resolution. Proc. Natl. Acad. Sci. USA 97, 2023–2028 (2000).

    Article  CAS  Google Scholar 

  24. Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B. & Steitz, T.A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl. Acad. Sci. USA 98, 4899–4903 (2001).

    Article  CAS  Google Scholar 

  25. Correll, C.C., Beneken, J., Plantinga, M.J., Lubbers, M. & Chan, Y.L. The common and the distinctive features of the bulged-G motif based on a 1.04 Å resolution RNA structure. Nucleic Acids Res. 31, 6806–6818 (2003).

    Article  CAS  Google Scholar 

  26. Michel, F. et al. Activation of the catalytic core of a group I intron by a remote 3′ splice junction. Genes Dev. 6, 1373–1385 (1992).

    Article  CAS  Google Scholar 

  27. Heus, H.A. & Pardi, A. Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science 253, 191–194 (1991).

    Article  CAS  Google Scholar 

  28. Lehnert, V., Jaeger, L., Michel, F. & Westhof, E. New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme. Chem. Biol. 3, 993–1009 (1996).

    Article  CAS  Google Scholar 

  29. Bass, B.L. & Cech, T. Ribozyme inhibitors: deoxyguanosine and dideoxyguanosine are competitive inhibitors of self-splicing of the Tetrahymena ribosomal ribonucleic acid precursor. Biochemistry 25, 4473–4478 (1986).

    Article  CAS  Google Scholar 

  30. Ortoleva-Donnelly, L., Szewczak, A.A., Gutell, R.R. & Strobel, S.A. The chemical basis of adenosine conservation throughout the Tetrahymena ribozyme. RNA 4, 498–519 (1998).

    Article  CAS  Google Scholar 

  31. Shan, S.O., Narlikar, G.J. & Herschlag, D. Protonated 2′-aminoguanosine as a probe of the electrostatic environment of the active site of the Tetrahymena group I ribozyme. Biochemistry 38, 10976–10988 (1999).

    Article  CAS  Google Scholar 

  32. Cate, J.H. et al. RNA tertiary structure mediation by adenosine platforms. Science 273, 1696–1699 (1996).

    Article  CAS  Google Scholar 

  33. Weinstein, L.B., Jones, B.C., Cosstick, R. & Cech, T.R. A second catalytic metal ion in group I ribozyme. Nature 388, 805–808 (1997).

    Article  CAS  Google Scholar 

  34. Moran, S., Kierzek, R. & Turner, D.H. Binding of guanosine and 3′ splice site analogues to a group I ribozyme: interactions with functional groups of guanosine and with additional nucleotides. Biochemistry 32, 5247–5256 (1993).

    Article  CAS  Google Scholar 

  35. Piccirilli, J.A., Vyle, J.S., Caruthers, M.H. & Cech, T.R. Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature 361, 85–88 (1993).

    Article  CAS  Google Scholar 

  36. Sjogren, A.S., Pettersson, E., Sjoberg, B.M. & Stromberg, R. Metal ion interaction with cosubstrate in self-splicing of group I introns. Nucleic Acids Res. 25, 648–653 (1997).

    Article  CAS  Google Scholar 

  37. Steitz, T.A. & Steitz, J.A. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl. Acad. Sci. USA 90, 6498–6502 (1993).

    Article  CAS  Google Scholar 

  38. Shan, S., Yoshida, A., Sun, S., Piccirilli, J.A. & Herschlag, D. Three metal ions at the active site of the Tetrahymena group I ribozyme. Proc. Natl. Acad. Sci. USA 96, 12299–12304 (1999).

    Article  CAS  Google Scholar 

  39. Cannone, J.J. et al. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 2 (2002).

    Article  Google Scholar 

  40. Bevilacqua, P.C., Johnson, K.A. & Turner, D.H. Cooperative and anticooperative binding to a ribozyme. Proc. Natl. Acad. Sci. USA 90, 8357–8361 (1993).

    Article  CAS  Google Scholar 

  41. Profenno, L.A., Kierzek, R., Testa, S.M. & Turner, D.H. Guanosine binds to the Tetrahymena ribozyme in more than one step, and its 2′-OH and the nonbridging pro-Sp phosphoryl oxygen at the cleavage site are required for productive docking. Biochemistry 36, 12477–12485 (1997).

    Article  CAS  Google Scholar 

  42. Herschlag, D., Eckstein, F. & Cech, T.R. The importance of being ribose at the cleavage site in the Tetrahymena ribozyme reaction. Biochemistry 32, 8312–8321 (1993).

    Article  CAS  Google Scholar 

  43. Karbstein, K. & Herschlag, D. Extraordinarily slow binding of guanosine to the Tetrahymena group I ribozyme: implications for RNA preorganization and function. Proc. Natl. Acad. Sci. USA 100, 2300–2305 (2003).

    Article  CAS  Google Scholar 

  44. Golden, B.L. & Cech, T.R. Conformational switches involved in orchestrating the successive steps of group I RNA splicing. Biochemistry 35, 3754–3763 (1996).

    Article  CAS  Google Scholar 

  45. Golden, B.L., Podell, E.R., Gooding, A.R. & Cech, T.R. Crystals by design: a strategy for crystallization of a ribozyme derived from the Tetrahymena group I intron. J. Mol. Biol. 270, 711–723 (1997).

    Article  CAS  Google Scholar 

  46. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  47. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  48. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  49. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard . Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  50. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997).

    Article  CAS  Google Scholar 

  51. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Bevilacqua, J. Bolin, C. Correll, J. Piccirilli, E. Westhof and members of the Golden laboratory for critical discussions, and to J. Hougland, D. Herschlag and J. Piccirilli for communication of results prior to publication. We thank the staff of BioCars, NE-CAT and SBC for assistance with data collection. This work was supported by NASA (NAG8-1833), the Pew Scholars Program in Biomedical Sciences and the Purdue University Cancer Center. This is journal paper number 2004-17476 from the Purdue University Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara L Golden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The Twort self-splicing reaction. (PDF 986 kb)

Supplementary Fig. 2

The Twort ribozyme reaction. (PDF 423 kb)

Supplementary Fig. 3

Ribozyme activity in manganese. (PDF 49 kb)

Supplementary Fig. 4

A manganese-binding site. (PDF 76 kb)

Supplementary Fig. 5 (PDF 84 kb)

Supplementary Table 1

Michaelis-Menten parameters for the Twort intron. (PDF 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golden, B., Kim, H. & Chase, E. Crystal structure of a phage Twort group I ribozyme–product complex. Nat Struct Mol Biol 12, 82–89 (2005). https://doi.org/10.1038/nsmb868

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb868

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing