Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic opening of DNA during the enzymatic search for a damaged base

Abstract

Uracil DNA glycosylase (UDG) removes uracil from U·A or U·G base pairs in genomic DNA by extruding the aberrant uracil from the DNA base stack. A question in enzymatic DNA repair is whether UDG and related glycosylases also use an extrahelical recognition mechanism to inspect the integrity of undamaged base pairs. Using NMR imino proton exchange measurements we find that UDG substantially increases the equilibrium constant for opening of T-A base pairs by almost two orders of magnitude relative to free B-DNA. This increase is brought about by enzymatic stabilization of an open state of the base pair without increasing the rate constant for spontaneous base pair opening. These findings indicate a passive search mechanism in which UDG uses the spontaneous opening dynamics of DNA to inspect normal base pairs in a rapid genome-wide search for uracil in DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Active and two passive mechanisms for base flipping.
Figure 2: Imino proton spectra and sequences of DNA duplexes used in these studies (pH 8.0, 10 °C).
Figure 3: Water magnetization transfer kinetics at pH 8.0 and 10 °C in the absence of DFEA buffer catalyst (see Supplementary Methods online).
Figure 4: Imino proton exchange mechanism and double-reciprocal plots of the observed exchange rates against DFEA catalyst concentration (see equation (1)).
Figure 5: Relative imino proton exchange parameters for the free and UDG-bound T-A duplex.

Similar content being viewed by others

References

  1. Stivers, J.T. & Jiang, Y.L. A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem. Rev. 103, 2729–2759 (2003).

    Article  CAS  Google Scholar 

  2. Stivers, J.T. Site-specific DNA damage recognition by enzyme-induced base flipping. Prog. Nucleic Acid Res. Mol. Biol. 77, 37–65 (2004).

    Article  CAS  Google Scholar 

  3. Parikh, S.S. et al. Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J. 17, 5214–5226 (1998).

    Article  CAS  Google Scholar 

  4. Parikh, S.S. et al. Uracil-DNA glycosylase-DNA substrate and product structures: conformational strain promotes catalytic efficiency by coupled stereoelectronic effects. Proc. Natl. Acad. Sci. USA 97, 5083–5088 (2000).

    Article  CAS  Google Scholar 

  5. Werner, R.M. et al. Stressing-out DNA? The contribution of serine-phosphodiester interactions in catalysis by uracil DNA glycosylase. Biochemistry 39, 12585–12594 (2000).

    Article  CAS  Google Scholar 

  6. Drohat, A.C. & Stivers, J.T. NMR evidence for an unusually low N1 pKa for uracil bound to uracil DNA glycosylase: Implications for catalysis. J. Am. Chem. Soc. 122, 1840–1841 (2000).

    Article  CAS  Google Scholar 

  7. Kwon, K., Jiang, Y. & Stivers, J. Rational engineering of a DNA glycosylase specific for an unnatural cytosine:pyrene base pair. Chem. Biol. 10, 1–20 (2003).

    Article  Google Scholar 

  8. Cao, C., Kwon, K., Jiang, Y.L., Drohat, A.C. & Stivers, J.T. Solution structure and base perturbation studies reveal a novel mode of alkylated base recognition by 3-methyladenine DNA glycosylase I. J. Biol. Chem. 48012–48021 (2003).

  9. Slupphaug, G. et al. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA [see comments]. Nature 384, 87–92 (1996).

    Article  CAS  Google Scholar 

  10. Lau, A.Y., Scharer, O.D., Samson, L., Verdine, G.L. & Ellenberger, T. Crystal structure of a human alkylbase-DNA repair enzyme complexed to DNA: mechanisms for nucleotide flipping and base excision. Cell 95, 249–258 (1998).

    Article  CAS  Google Scholar 

  11. Lau, A.Y., Wyatt, M.D., Glassner, B.J., Samson, L.D. & Ellenberger, T. Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc. Natl. Acad. Sci. USA 97, 13573–13578 (2000).

    Article  CAS  Google Scholar 

  12. Jiang, Y.L. & Stivers, J.T. Mutational analysis of the base flipping mechanism of uracil DNA glycosylase. Biochemistry 41, 11236–11247 (2002).

    Article  CAS  Google Scholar 

  13. Stivers, J.T., Pankiewicz, K.W. & Watanabe, K.A. Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase. Biochemistry 38, 952–963 (1999).

    Article  CAS  Google Scholar 

  14. Roberts, R.J. On base flipping. Cell 82, 9–12 (1995).

    Article  CAS  Google Scholar 

  15. Krosky, D.J., Schwarz, F.P. & Stivers, J.T. Linear free energy correlations for enzymatic base flipping: how do damaged base pairs facilitate specific recognition? Biochemistry 43, 4188–4195 (2004).

    Article  CAS  Google Scholar 

  16. Jencks, W.P. When is an intermediate not an intermediate—enforced mechanisms of general acid-base catalyzed, carbocation, carbanion, and ligand-exchange reactions. Acc. Chem. Res. 13, 161–169 (1980).

    Article  CAS  Google Scholar 

  17. Chen, L., Haushalter, K.A., Lieber, C.M. & Verdine, G.L. Direct visualization of a DNA glycosylase searching for damage. Chem. Biol. 9, 345–350 (2002).

    Article  CAS  Google Scholar 

  18. Verdine, G.L. & Bruner, S.D. How do DNA repair proteins locate damaged bases in the genome? Chem. Biol. 4, 329–334 (1997).

    Article  CAS  Google Scholar 

  19. Seibert, E., Ross, J.B. & Osman, R. Role of DNA flexibility in sequence-dependent activity of uracil DNA glycosylase. Biochemistry 41, 10976–10984 (2002).

    Article  CAS  Google Scholar 

  20. Banavali, N.K. & MacKerell, A.D. Jr. Free energy and structural pathways of base flipping in a DNA GCGC containing sequence. J. Mol. Biol. 319, 141–160 (2002).

    Article  CAS  Google Scholar 

  21. Gueron, M. & Leroy, J.-L. Studies of Base Pair Kinetics by NMR Measurement of Proton Exchange. Methods Enzymol. 261, 383–413 (1995).

    Article  CAS  Google Scholar 

  22. Guéron, M. et al. Applications to imino proton exchange to nucleic acid kinetics and structure. In Structure and Methods (eds. Sarma, R.H. & Sarma, M.H.) 113–137 (Adenine Press, Guilderland, New York, 1990).

    Google Scholar 

  23. Kavli, B. et al. Excision of cytosine and thymine from DNA by mutants of human uracil-DNA glycosylase. EMBO J. 15, 3442–3447 (1996).

    Article  CAS  Google Scholar 

  24. Gueron, M., Kochoyan, M. & Leroy, J.L. A single mode of DNA base-pair opening drives imino proton exchange. Nature 328, 89–92 (1987).

    Article  CAS  Google Scholar 

  25. Warmlander, S., Sen, A. & Leijon, M. Imino proton exchange in DNA catalyzed by ammonia and trimethylamine: evidence for a secondary long-lived open state of the base pair. Biochemistry 39, 607–615 (2000).

    Article  CAS  Google Scholar 

  26. Handa, P., Acharya, N. & Varshney, U. Effects of mutations at tyrosine 66 and asparagine 123 in the active site pocket of Escherichia coli uracil DNA glycosylase on uracil excision from synthetic DNA oligomers: evidence for the occurrence of long-range interactions between the enzyme and substrate. Nucleic Acids Res. 30, 3086–3095 (2002).

    Article  CAS  Google Scholar 

  27. Jiang, Y.L., Song, F. & Stivers, J.T. Base flipping mutations of uracil DNA glycosylase: substrate rescue using a pyrene nucleotide wedge. Biochemistry 41, 11248–11254 (2002).

    Article  CAS  Google Scholar 

  28. Bommarito, S., Peyret, N. & SantaLucia, J. Jr. Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids Res. 28, 1929–1934 (2000).

    Article  CAS  Google Scholar 

  29. Stivers, J.T., Jagadeesh, G.J., Nawrot, B., Stec, W.J. & Shuman, S. Stereochemical outcome and kinetic effects of Rp- and Sp- phosphorothioate substitutions at the cleavage site of vaccinia type I DNA topoisomerase. Biochemistry 39, 5561–5572 (2000).

    Article  CAS  Google Scholar 

  30. Drohat, A.C., Jagadeesh, J., Ferguson, E. & Stivers, J.T. Role of electrophilic and general base catalysis in the mechanism of Escherichia coli uracil DNA glycosylase. Biochemistry 38, 11866–11875 (1999).

    Article  CAS  Google Scholar 

  31. Jiang, Y.L., Kwon, K. & Stivers, J.T. Turning on uracil-DNA glycosylase using a pyrene nucleotide switch. J. Biol. Chem. 276, 42347–42354 (2001).

    Article  CAS  Google Scholar 

  32. Jiang, Y.L., Ichikawa, Y. & Stivers, J.T. Inhibition of uracil DNA glycosylase by an oxacarbenium ion mimic. Biochemistry 41, 7116–7124 (2002).

    Article  CAS  Google Scholar 

  33. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  34. Snoussi, K. & Leroy, J.L. Imino proton exchange and base-pair kinetics in RNA duplexes. Biochemistry 40, 8898–9904 (2001).

    Article  CAS  Google Scholar 

  35. Benight, A.S., Schurr, J.M., Flynn, P.F., Reid, B.R. & Wemmer, D.E. Melting of a self-complementary DNA minicircle. Comparison of optical melting theory with exchange broadening of the nuclear magnetic resonance spectrum. J. Mol. Biol. 200, 377–399 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grant GM56834-09 to J.T.S.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Determination of the equilibrium dissociation constants for the T-A and G-C duplexes. (PDF 52 kb)

Supplementary Table 1

Rate and equilibrium constants for base pair opening in free and bound T/A duplex DNA. (PDF 43 kb)

Supplementary Table 2

Rate and equilibrium constants for base pair opening in 2′-FU·A duplex DNA. (PDF 34 kb)

Supplementary Table 3

Rate and equilibrium constants for base pair opening in free and bound G-C duplex DNA. (PDF 36 kb)

Supplementary Methods (PDF 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, C., Jiang, Y., Stivers, J. et al. Dynamic opening of DNA during the enzymatic search for a damaged base. Nat Struct Mol Biol 11, 1230–1236 (2004). https://doi.org/10.1038/nsmb864

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb864

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing