Abstract
The bacterial Sm-like protein Hfq facilitates RNA-RNA interactions involved in post-transcriptional regulation of the stress response. Specifically, Hfq helps pair noncoding RNAs (ncRNAs) with complementary regions of target mRNAs. To probe the mechanism of this pairing, we generated a series of Hfq mutants and measured their affinity for RNAs like those with which Hfq must associate in vivo. We tested the mutants' DsrA-dependent activation of rpoS, and their ability to stabilize DsrA ncRNA against degradation in vivo. Our results suggest that Hfq has two independent RNA-binding surfaces. In addition to a well-known site around the core of the Hfq hexamer, we observe interactions with the distal face of Hfq, a new locus with which mRNAs and poly(A) sequences associate. Our model explains how Hfq can simultaneously bind a ncRNA and its mRNA target to facilitate the strand displacement reaction required for Hfq-dependent translational regulation.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Identification of protein-protein and ribonucleoprotein complexes containing Hfq
Scientific Reports Open Access 01 October 2019
-
A Canonical Biophysical Model of the CsrA Global Regulator Suggests Flexible Regulator-Target Interactions
Scientific Reports Open Access 02 July 2018
-
In vivo characterization of an Hfq protein encoded by the Bacillus anthracis virulence plasmid pXO1
BMC Microbiology Open Access 14 March 2017
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Accession codes
References
Hori, K. & Yanazaki, Y. Nucleotide sequence specific interaction of host factor I with bacteriophage Q β RNA. FEBS Lett. 43, 20–22 (1974).
Van Emmelo, J., De Boever, J., Gillis, E. & Fiers, W. A host factor required for Q-β-RNA-replication in “Escherichia coli”. Arch. Int. Physiol. Biochim. 81, 393–394 (1973).
Storz, G. An Expanding Universe of Noncoding RNAs. Science 296, 1260–1263 (2002).
Repoila, F., Majdalani, N. & Gottesman, S. Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: the RpoS paradigm. Mol. Microbiol. 48, 855–861 (2003).
Storz, G., Opdyke, J.A. & Zhang, A. Controlling mRNA stability and translation with small, noncoding RNAs. Curr. Opin. Microbiol. 7, 140–144 (2004).
Valentin-Hansen, P., Eriksen, M. & Udesen, C. The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol. Microbiol. 51, 1525–1533 (2004).
Sledjeski, D.D., Whitman, C. & Zhang, A. Hfq is necessary for regulation by the untranslated RNA DsrA. J. Bacteriol. 183, 1997–2005 (2001).
Sonnleitner, E. et al. Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb. Pathog. 35, 217–228 (2003).
Majdalani, N., Cunning, C., Sledjeski, D., Elliott, T. & Gottesman, S. DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc. Natl. Acad. Sci. USA 95, 12462–12467 (1998).
Lease, R.A., Cusick, M.E. & Belfort, M. Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. Proc. Natl. Acad. Sci. USA 95, 12456–12461 (1998).
Altuvia, S., Zhang, A., Argaman, L., Tiwari, A. & Storz, G. The Escherichia coli OxyS regulatory RNA represses fhlA translation by blocking ribosome binding. EMBO J. 17, 6069–6075 (1998).
Argaman, L. & Altuvia, S. fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense–target RNA complex. J. Mol. Biol. 300, 1101–1112 (2000).
Zhang, A. et al. The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. EMBO J. 17, 6061–6068 (1998).
Majdalani, N., Chen, S., Murrow, J., St John, K. & Gottesman, S. Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol. Microbiol. 39, 1382–1394 (2001).
Masse, E. & Gottesman, S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli . Proc. Natl. Acad. Sci. USA 99, 4620–4625 (2002).
Masse, E., Escorcia, F.E. & Gottesman, S. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli . Genes Dev. 17, 2374–2383 (2003).
Vecerek, B., Moll, I., Afonyushkin, T., Kaberdin, V. & Blasi, U. Interaction of the RNA chaperone Hfq with mRNAs: direct and indirect roles of Hfq in iron metabolism of Escherichia coli . Mol. Microbiol. 50, 897–909 (2003).
Moller, T., Franch, T., Udesen, C., Gerdes, K. & Valentin-Hansen, P. Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev. 16, 1696–1706 (2002).
Hajnsdorf, E. & Regnier, P. Host factor Hfq of Escherichia coli stimulates elongation of poly(A) tails by poly(A) polymerase I. Proc. Natl. Acad. Sci. USA 97, 1501–1505 (2000).
Le Derout, J. et al. Hfq affects the length and the frequency of short oligo(A) tails at the 3′ end of Escherichia coli rpsO mRNAs. Nucleic Acids Res. 31, 4017–4023 (2003).
Vytvytska, O., Moll, I., Kaberdin, V.R., von Gabain, A. & Blasi, U. Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Genes Dev. 14, 1109–1118 (2000).
Folichon, M. et al. The poly(A) binding protein Hfq protects RNA from RNase E and exoribonucleolytic degradation. Nucleic Acids Res. 31, 7302–7310 (2003).
Arluison, V. et al. Structural modelling of the Sm-like protein Hfq from Escherichia coli . J. Mol. Biol. 320, 705–712 (2002).
Moller, T. et al. Hfq: a bacterial Sm-like protein that mediates RNA–RNA interaction. Mol. Cell 9, 23–30 (2002).
Zhang, A., Wassarman, K.M., Ortega, J., Steven, A.C. & Storz, G. The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol. Cell 9, 11–22 (2002).
Sun, X., Zhulin, I. & Wartell, R.M. Predicted structure and phyletic distribution of the RNA-binding protein Hfq. Nucleic Acids Res. 30, 3662–3671 (2002).
Sauter, C., Basquin, J. & Suck, D. Sm-like proteins in eubacteria: the crystal structure of the Hfq protein from Escherichia coli . Nucleic Acids Res. 31, 4091–4098 (2003).
Marchler-Bauer, A. et al. CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res. 31, 383–387 (2003).
Schumacher, M.A., Pearson, R.F., Moller, T., Valentin-Hansen, P. & Brennan, R.G. Structures of the pleiotropic translational regulator Hfq and an Hfq–RNA complex: a bacterial Sm-like protein. EMBO J. 21, 3546–3556 (2002).
Kambach, C. et al. Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 96, 375–387 (1999).
Achsel, T. et al. A doughnut-shaped heteromer of human Sm-like proteins binds to the 3′-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro . EMBO J. 18, 5789–5802 (1999).
Achsel, T., Stark, H. & Luhrmann, R. The Sm domain is an ancient RNA-binding motif with oligo(U) specificity. Proc. Natl. Acad. Sci. USA 98, 3685–3689 (2001).
Toro, I. et al. RNA binding in an Sm core domain: X-ray structure and functional analysis of an archaeal Sm protein complex. EMBO J. 20, 2293–2303 (2001).
Toro, I., Basquin, J., Teo-Dreher, H. & Suck, D. Archaeal Sm proteins form heptameric and hexameric complexes: crystal structures of the Sm1 and Sm2 proteins from the hyperthermophile Archaeoglobus fulgidus . J. Mol. Biol. 320, 129–142 (2002).
Moll, I., Leitsch, D., Steinhauser, T. & Blasi, U. RNA chaperone activity of the Sm-like Hfq protein. EMBO Rep. 4, 284–289 (2003).
Geissmann, T.A. & Touati, D. Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. EMBO J. 23, 396–405 (2004).
Brescia, C.C., Mikulecky, P.J., Feig, A.L. & Sledjeski, D.D. Identification of the Hfq binding site on DsrA RNA: Hfq binds without altering DsrA secondary structure. RNA 9, 33–43 (2003).
Moll, I., Afonyushkin, T., Vytvytska, O., Kaberdin, V.R. & Blasi, U. Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA 9, 1308–1314 (2003).
Stage-Zimmermann, T.K. & Uhlenbeck, O.C. Hammerhead ribozyme kinetics. RNA 4, 875–889 (1998).
Plum, G.E. & Breslauer, K.J. Calorimetry of proteins and nucleic acids. Curr. Opin. Struct. Biol. 5, 682–690 (1995).
Ladbury, J.E. & Chowdhry, B.Z. Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem. Biol. 3, 791–801 (1996).
Leavitt, S. & Freire, E. Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr. Opin. Struct. Biol. 11, 560–566 (2001).
de Haseth, P.L. & Uhlenbeck, O.C. Interaction of Escherichia coli host factor protein with oligoriboadenylates. Biochemistry 19, 6138–6146 (1980).
Sledjeski, D.D., Gupta, A. & Gottesman, S. The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli . EMBO J. 15, 3993–4000 (1996).
Guzman, L.M., Belin, D., Carson, M.J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).
Mura, C., Kozhukhovsky, A., Gingery, M., Phillips, M. & Eisenberg, D. The oligomerization and ligand-binding properties of Sm-like archaeal proteins (SmAPs). Protein Sci. 12, 832–847 (2003).
Thore, S., Mayer, C., Sauter, C., Weeks, S. & Suck, D. Crystal structures of the Pyrococcus abyssi Sm core and its complex with RNA: common features of RNA-binding in Archaea and Eukarya. J. Biol. Chem. 278, 1239–1247 (2003).
Urlaub, H., Raker, V.A., Kostka, S. & Luhrmann, R. Sm protein-Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure. EMBO J. 20, 187–196 (2001).
Stark, H., Dube, P., Luhrmann, R. & Kastner, B. Arrangement of RNA and proteins in the spliceosomal U1 small nuclear ribonucleoprotein particle. Nature 409, 539–542 (2001).
Arluison, V. et al. The C-terminal domain of Escherichia coli Hfq increases the stability of the hexamer. Eur. J. Biochem. 271, 1258–1265 (2004).
Stoscheck, C.M. Quantitation of protein. Methods Enzymol. 182, 50–68 (1990).
Mikulecky, P.J., Takach, J.C. & Feig, A.L. Entropy-driven folding of an RNA helical junction: an isothermal titration calorimetric analysis of the hammerhead ribozyme. Biochemistry 43, 5870–5881 (2004).
Schagger, H. & von Jagow, G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379 (1987).
Towbin, H., Staehelin, T. & Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354 (1979).
Brescia, C.C., Kaw, M.K. & Sledjeski, D.D. The DNA binding protein H-NS binds to and alters the stability of RNA in vitro and in vivo. J. Mol. Biol. 339, 505–514 (2004).
Bernstein, J.A., Khodursky, A.B., Lin, P.H., Lin-Chao, S. & Cohen, S.N. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl. Acad. Sci. USA 99, 9697–9702 (2002).
Miller, J.H. Experiments in Bacterial Genetics (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1972).
Acknowledgements
This work is supported by grants from the US National Institutes of Health (GM065430 to A.L.F., GM056448 to D.S., and T32-GM07757 to Indiana University/P.J.M.). A.L.F. is a Cottrell Scholar of Research Corporation. The Typhoon 9210 imaging system was purchased with a grant from the US National Science Foundation (DBI-0244815). The authors thank T. Stone (Indiana University) for technical support in the Physical Biochemistry Instrumentation Facility, and J. Fitzgerald, A. Kerzmann, N. Anderson and S. Kamel (Indiana University) for assistance in the cloning and sequencing of the constructs.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Figure 1
Isothermal titration calorimetry of DsrA titrated into wild-type Hfq. (PDF 62 kb)
Supplementary Table 1
Summary of thermodynamic data from ITC analysis. (PDF 8 kb)
Supplementary Table 2
Primers used for cloning and QRT-PCR. (PDF 12 kb)
Rights and permissions
About this article
Cite this article
Mikulecky, P., Kaw, M., Brescia, C. et al. Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nat Struct Mol Biol 11, 1206–1214 (2004). https://doi.org/10.1038/nsmb858
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nsmb858
This article is cited by
-
A bacterial three-hybrid assay for forward and reverse genetic analysis of RNA–protein interactions
Nature Protocols (2022)
-
Identification of protein-protein and ribonucleoprotein complexes containing Hfq
Scientific Reports (2019)
-
A Canonical Biophysical Model of the CsrA Global Regulator Suggests Flexible Regulator-Target Interactions
Scientific Reports (2018)
-
RNA-binding proteins in bacteria
Nature Reviews Microbiology (2018)
-
In vivo characterization of an Hfq protein encoded by the Bacillus anthracis virulence plasmid pXO1
BMC Microbiology (2017)