Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Regulated nucleosome mobility and the histone code

Abstract

Post-translational modifications of the histone tails are correlated with distinct chromatin states that regulate access to DNA. Recent proteomic analyses have revealed several new modifications in the globular nucleosome core, many of which lie at the histone-DNA interface. We interpret these modifications in light of previously published data and propose a new and testable model for how cells implement the histone code by modulating nucleosome dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Annotated map of previously known and newly identified histone modifications on the surface of the X. laevis nucleosome core particle26.
Figure 2: The regulated nucleosome mobility model.
Figure 3: Regulated nucleosome mobility, a missing link in the regulation of chromatin dynamics.

Similar content being viewed by others

References

  1. Narlikar, G.J., Fan, H.Y. & Kingston, R.E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

    Article  CAS  Google Scholar 

  2. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  Google Scholar 

  3. Fischle, W., Wang, Y. & Allis, C.D. Binary switches and modification cassettes in histone biology and beyond. Nature 425, 475–479 (2003).

    Article  CAS  Google Scholar 

  4. Cocklin, R.R. & Wang, M. Identification of methylation and acetylation sites on mouse histone H3 using matrix-assisted laser desorption/ionization time-of-flight and nanoelectrospray ionization tandem mass spectrometry. J. Protein Chem. 22, 327–334 (2003).

    Article  CAS  Google Scholar 

  5. Zhang, K. et al. Identification of acetylation and methylation sites of histone H3 from chicken erythrocytes by high-accuracy matrix-assisted laser desorption ionization-time-of-flight, matrix-assisted laser desorption ionization-postsource decay, and nanoelectrospray ionization tandem mass spectrometry. Anal. Biochem. 306 259–269 (2002).

    Article  CAS  Google Scholar 

  6. Zhang, L., Eugeni, E.E., Parthun, M.R. & Freitas, M.A. Identification of novel histone post-translational modifications by peptide mass fingerprinting. Chromosoma 112, 77–86 (2003).

    Article  CAS  Google Scholar 

  7. Freitas, M.A., Sklenar, A.R. & Parthun, M.R. Application of mass spectrometry to the identification and quantification of histone post-translational modifications. J. Cell Biochem. 92, 691–700 (2004).

    Article  CAS  Google Scholar 

  8. Hansen, J.C. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu. Rev. Biophys. Biomol. Struct. 31, 361–392 (2002).

    Article  CAS  Google Scholar 

  9. Luger, K. Structure and dynamic behavior of nucleosomes. Curr. Opin. Genet. Dev. 13, 127–135 (2003).

    Article  CAS  Google Scholar 

  10. Pennings, S., Meersseman, G. & Bradbury, E.M. Mobility of positioned nucleosomes on 5 S rDNA. J. Mol. Biol. 220, 101–110 (1991).

    Article  CAS  Google Scholar 

  11. Becker, P.B. & Horz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002).

    Article  CAS  Google Scholar 

  12. Becker, P.B. Nucleosome sliding: facts and fiction. EMBO J. 21, 4749–4753 (2002).

    Article  CAS  Google Scholar 

  13. Eisen, J.A., Sweder, K.S. & Hanawalt, P.C. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 23, 2715–2723 (1995).

    Article  CAS  Google Scholar 

  14. Whitehouse, I. et al. Nucleosome mobilization catalysed by the yeast SWI/SNF complex. Nature 400, 784–787 (1999).

    Article  CAS  Google Scholar 

  15. Langst, G. & Becker, P.B. ISWI induces nucleosome sliding on nicked DNA. Mol. Cell 8, 1085–1092 (2001).

    Article  CAS  Google Scholar 

  16. Guschin, D. & Wolffe, A.P. SWItched-on mobility. Curr. Biol. 9, R742–R746 (1999).

    Article  CAS  Google Scholar 

  17. Schnitzler, G., Sif, S. & Kingston, R.E. Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell 94, 17–27 (1998).

    Article  CAS  Google Scholar 

  18. Lorch, Y., Cairns, B.R., Zhang, M. & Kornberg, R.D. Activated RSC–nucleosome complex and persistently altered form of the nucleosome. Cell 94, 29–34 (1998).

    Article  CAS  Google Scholar 

  19. Imbalzano, A.N., Schnitzler, G.R. & Kingston, R.E. Nucleosome disruption by human SWI/SNF is maintained in the absence of continued ATP hydrolysis. J. Biol. Chem. 271, 20726–20733 (1996).

    Article  CAS  Google Scholar 

  20. Cote, J., Peterson, C.L. & Workman, J.L. Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc. Natl. Acad. Sci. USA 95, 4947–4952 (1998).

    Article  CAS  Google Scholar 

  21. Owen-Hughes, T., Utley, R.T., Cote, J., Peterson, C.L. & Workman, J.L. Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex. Science 273, 513–516 (1996).

    Article  CAS  Google Scholar 

  22. Bazett-Jones, D.P., Cote, J., Landel, C.C., Peterson, C.L. & Workman, J.L. The SWI/SNF complex creates loop domains in DNA and polynucleosome arrays and can disrupt DNA-histone contacts within these domains. Mol. Cell. Biol. 19, 1470–1478 (1999).

    Article  CAS  Google Scholar 

  23. Zeng, L. & Zhou, M.M. Bromodomain: an acetyl-lysine binding domain. FEBS Lett. 513, 124–128 (2002).

    Article  CAS  Google Scholar 

  24. Brehm, A., Tufteland, K.R., Aasland, R. & Becker, P.B. The many colours of chromodomains. Bioessays 26, 133–140 (2004).

    Article  CAS  Google Scholar 

  25. White, C.L., Suto, R.K. & Luger, K. Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO J. 20, 5207–5218 (2001).

    Article  CAS  Google Scholar 

  26. Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W. & Richmond, T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol. 319, 1097–1113 (2002).

    Article  CAS  Google Scholar 

  27. Cuthbert, G.L. et al. Histone deimination antagonizes arginine methylation. Cell 118, 545–553 (2004).

    Article  CAS  Google Scholar 

  28. Wang, Y. et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306, 279–283 (2004).

    Article  CAS  Google Scholar 

  29. Roberts, S.M. & Winston, F. Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes. Genetics 147, 451–465 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pollard, K.J. & Peterson, C.L. Role for ADA/GCN5 products in antagonizing chromatin-mediated transcriptional repression. Mol. Cell. Biol. 17, 6212–6222 (1997).

    Article  CAS  Google Scholar 

  31. Syntichaki, P., Topalidou, I. & Thireos, G. The Gcn5 bromodomain co-ordinates nucleosome remodelling. Nature 404, 414–417 (2000).

    Article  CAS  Google Scholar 

  32. Brownell, J.E. et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84, 843–851 (1996).

    Article  CAS  Google Scholar 

  33. Guyon, J.R., Narlikar, G.J., Sif, S. & Kingston, R.E. Stable remodeling of tailless nucleosomes by the human SWI–SNF complex. Mol. Cell. Biol. 19, 2088–2097 (1999).

    Article  CAS  Google Scholar 

  34. Park, J.H., Cosgrove, M.S., Youngman, E., Wolberger, C. & Boeke, J.D. A core nucleosome surface crucial for transcriptional silencing. Nat. Genet. 32, 273–279 (2002).

    Article  CAS  Google Scholar 

  35. Kruger, W. et al. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription. Genes Dev. 9, 2770–2779 (1995).

    Article  CAS  Google Scholar 

  36. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  37. Perez-Martin, J. & Johnson, A.D. Mutations in chromatin components suppress a defect of Gcn5 protein in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 1049–1054 (1998).

    Article  CAS  Google Scholar 

  38. Muthurajan, U.M. et al. Crystal structures of histone Sin mutant nucleosomes reveal altered protein-DNA interactions. EMBO J. 23, 260–271 (2004).

    Article  CAS  Google Scholar 

  39. Flaus, A., Rencurel, C., Ferreira, H., Wiechens, N. & Owen-Hughes, T. Sin mutations alter inherent nucleosome mobility. EMBO J. 23, 343–353 (2004).

    Article  CAS  Google Scholar 

  40. Kadosh, D. & Struhl, K. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89, 365–371 (1997).

    Article  CAS  Google Scholar 

  41. Horn, P.J., Crowley, K.A., Carruthers, L.M., Hansen, J.C. & Peterson, C.L. The SIN domain of the histone octamer is essential for intramolecular folding of nucleosomal arrays. Nat. Struct. Biol. 9, 167–171 (2002).

    Article  CAS  Google Scholar 

  42. Steger, D.J., Haswell, E.S., Miller, A.L., Wente, S.R. & O'Shea, E.K. Regulation of chromatin remodeling by inositol polyphosphates. Science 299, 114–116 (2003).

    Article  CAS  Google Scholar 

  43. Shen, X., Xiao, H., Ranallo, R., Wu, W.H. & Wu, C. Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299, 112–114 (2003).

    Article  CAS  Google Scholar 

  44. Kruger, W. & Herskowitz, I. A negative regulator of HO transcription, SIN1 (SPT2), is a nonspecific DNA-binding protein related to HMG1. Mol. Cell. Biol. 11, 4135–4146 (1991).

    Article  CAS  Google Scholar 

  45. Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).

    Article  CAS  Google Scholar 

  46. Redon, C. et al. Histone H2A variants H2AX and H2AZ. Curr. Opin. Genet. Dev. 12, 162–169 (2002).

    Article  CAS  Google Scholar 

  47. McKittrick, E., Gafken, P.R., Ahmad, K. & Henikoff, S. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc. Natl. Acad. Sci. USA 101, 1525–1530 (2004).

    Article  CAS  Google Scholar 

  48. Noma, K., Allis, C.D. & Grewal, S.I. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293, 1150–1155 (2001).

    Article  CAS  Google Scholar 

  49. Dorigo, B., Schalch, T., Bystricky, K. & Richmond, T.J. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J. Mol. Biol. 327, 85–96 (2003).

    Article  CAS  Google Scholar 

  50. Clapier, C.R., Nightingale, K.P. & Becker, P.B. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucleic Acids Res. 30, 649–655 (2002).

    Article  CAS  Google Scholar 

  51. Hamiche, A., Kang, J.G., Dennis, C., Xiao, H. & Wu, C. Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF. Proc. Natl. Acad. Sci. USA 98, 14316–14321 (2001).

    Article  CAS  Google Scholar 

  52. Clapier, C.R., Langst, G., Corona, D.F., Becker, P.B. & Nightingale, K.P. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol. Cell. Biol. 21, 875–883 (2001).

    Article  CAS  Google Scholar 

  53. Langst, G. & Becker, P.B. Nucleosome remodeling: one mechanism, many phenomena? Biochim. Biophys. Acta 1677, 58–63 (2004).

    Article  CAS  Google Scholar 

  54. Hassan, A.H. et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111, 369–379 (2002).

    Article  CAS  Google Scholar 

  55. Kasten, M. et al. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J. 23, 1348–1359 (2004).

    Article  CAS  Google Scholar 

  56. Nishioka, K. et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev. 16, 479–489 (2002).

    Article  CAS  Google Scholar 

  57. Ahringer, J. NuRD and SIN3 histone deacetylase complexes in development. Trends Genet. 16, 351–356 (2000).

    Article  CAS  Google Scholar 

  58. van Leeuwen, F., Gafken, P.R. & Gottschling, D.E. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109, 745–756 (2002).

    Article  CAS  Google Scholar 

  59. Li, G. & Widom, J. Nucleosomes facilitate their own invasion. Nat. Struct. Mol. Biol. 11, 763–769 (2004).

    Article  CAS  Google Scholar 

  60. Khorasanizadeh, S. The nucleosome: from genomic organization to genomic regulation. Cell 116, 259–272 (2004).

    Article  CAS  Google Scholar 

  61. Fleming, A.B. & Pennings, S. Antagonistic remodelling by Swi-Snf and Tup1-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation. EMBO J. 20, 5219–5231 (2001).

    Article  CAS  Google Scholar 

  62. Maile, T., Kwoczynski, S., Katzenberger, R.J., Wassarman, D.A. & Sauer, F. TAF1 activates transcription by phosphorylation of serine 33 in histone H2B. Science 304, 1010–1014 (2004).

    Article  CAS  Google Scholar 

  63. Sun, Z.W. & Allis, C.D. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418, 104–108 (2002).

    Article  CAS  Google Scholar 

  64. Ng, H.H., Xu, R.M., Zhang, Y. & Struhl, K. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J. Biol. Chem. 277, 34655–34657 (2002).

    Article  CAS  Google Scholar 

  65. Briggs, S.D. et al. Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418, 498 (2002).

    Article  CAS  Google Scholar 

  66. DiRenzo, J. et al. BRG-1 is recruited to estrogen-responsive promoters and cooperates with factors involved in histone acetylation. Mol. Cell. Biol. 20, 7541–7549 (2000).

    Article  CAS  Google Scholar 

  67. Mizuguchi, G., Vassilev, A., Tsukiyama, T., Nakatani, Y. & Wu, C. ATP-dependent nucleosome remodeling and histone hyperacetylation synergistically facilitate transcription of chromatin. J. Biol. Chem. 276, 14773–14783 (2001).

    Article  CAS  Google Scholar 

  68. Galarneau, L. et al. Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Mol. Cell 5, 927–937 (2000).

    Article  CAS  Google Scholar 

  69. Reid, J.L., Iyer, V.R., Brown, P.O. & Struhl, K. Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase. Mol. Cell 6, 1297–1307 (2000).

    Article  CAS  Google Scholar 

  70. Kim, J. et al. Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity 10, 345–355 (1999).

    Article  CAS  Google Scholar 

  71. Fazzio, T.G. et al. Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol. Cell. Biol. 21, 6450–6460 (2001).

    Article  CAS  Google Scholar 

  72. Sif, S., Saurin, A.J., Imbalzano, A.N. & Kingston, R.E. Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev. 15, 603–618 (2001).

    Article  CAS  Google Scholar 

  73. Zhou, Y., Santoro, R. & Grummt, I. The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription. EMBO J. 21, 4632–4640 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Ruth L. Kirschstein National Research Service Award postdoctoral fellowship to M.S.C. from the US National Cancer Institute, and by a grant from the US National Institutes of Health to J.D.B. and C.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jef D Boeke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosgrove, M., Boeke, J. & Wolberger, C. Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol 11, 1037–1043 (2004). https://doi.org/10.1038/nsmb851

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb851

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing