Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the periplasmic chaperone Skp suggests functional similarity with cytosolic chaperones despite differing architecture

Abstract

The 17-kDa protein (Skp) of Escherichia coli is a homotrimeric periplasmic chaperone for newly synthesized outer-membrane proteins. Here we present its X-ray structure at a resolution of 2.35 Å. Three hairpin-shaped α-helical extensions reach out by 60 Å from a trimerization domain, which is composed of three intersubunit β-sheets that wind around a central axis. The α-helical extensions approach each other at their distal turns, resulting in a fold that resembles a 'three-pronged grasping forceps'. The overall shape of Skp is reminiscent of the cytosolic chaperone prefoldin, although it is based on a radically different topology. The peculiar architecture, with apparent plasticity of the prongs and distinct electrostatic and hydrophobic surface properties, supports the recently proposed biochemical mechanism of this chaperone: formation of a Skp3–Omp complex protects the outer membrane protein from aggregation during passage through the bacterial periplasm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular structure of Skp.
Figure 2: Electrostatic surface representation of Skp.
Figure 3: Hydrophobic-polar surface representations of Skp and Pfd.
Figure 4: Structural variability pattern of Skp.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Danese, P.N. & Silhavy, T.J. Targeting and assembly of periplasmic and outer-membrane proteins in Escherichia coli. Annu. Rev. Genet. 32, 59–94 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Thome, B.M. & Müller, M. Skp is a periplasmic Escherichia coli protein requiring SecA and SecY for export. Mol. Microbiol. 5, 2815–2821 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, R. & Henning, U. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol. Microbiol. 19, 1287–1294 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Schäfer, U., Beck, K. & Müller, M. Skp, a molecular chaperone of gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J. Biol. Chem. 35, 24567–24574 (1999).

    Article  Google Scholar 

  5. De Cock, H. et al. Affinity of the periplasmic chaperone Skp of Escherichia coli for phospholipids, lipopolysaccharides and non-native outer membrane proteins. Role of Skp in the biogenesis of outer membrane protein. Eur. J. Biochem. 259, 96–103 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Harms, N. et al. The early interaction of the outer membrane protein PhoE with the periplasmic chaperone Skp occurs at the cytoplasmic membrane. J. Biol. Chem. 276, 18804–18811 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Pautsch, A. & Schulz, G.E. Structure of the outer membrane protein A transmembrane domain. Nat. Struct. Biol. 5, 1013–1017 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Cowan, S.W. et al. Crystal structures explain functional properties of two E. coli porins. Nature 358, 727–733 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Dutzler, R., Wang, Y.F., Rizkallah, P., Rosenbusch, J.P. & Schirmer, T. Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway. Structure 4, 127–134 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Bulieris, P.V., Behrens, S., Holst, O. & Kleinschmidt, J.H. Folding and insertion of the outer membrane protein OmpA is assisted by the chaperone Skp and by lipopolysaccharide. J. Biol. Chem. 278, 9092–9099 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Voulhoux, R., Bos, M.P., Geurtsen, J., Mols, M. & Tommassen, J. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Schlapschy, M. et al. The periplasmic E. coli chaperone Skp is a trimer in solution: biophysical and preliminary crystallographic characterization. Biol. Chem. 385, 137–143 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Crick, F.H.C. The packing of α-helices: simple coiled-coils. Acta Crystallogr. 6, 689–697 (1953).

    Article  CAS  Google Scholar 

  14. Kleywegt, G.J., Zou, J.Y., Kjeldgaard, M. & Jones, T.A. Around O. In International Tables for Crystallography Vol. F (eds. Rossmann, M.G. & Arnold, E.) 353–356, 366–367 (Kluwer Academic, Dordrecht, The Netherlands, 2001).

    Google Scholar 

  15. Bansal, M., Kumar, S. & Velavan, R. HELANAL—a program to characterize helix geometry in proteins. J. Biomol. Struct. Dyn. 17, 811–819 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 223, 123–138 (1993).

    Article  Google Scholar 

  17. Siegert, R., Leroux, M.R., Scheufler, C., Hartl, F.U. & Moarefi, I. Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103, 621–632 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Martín-Benito, J. et al. Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBO J. 21, 6377–6386 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sha, B., Lee, S. & Cyr, D.M. The crystal structure of the peptide-binding fragment from the yeast Hsp40 protein Sis1. Structure 8, 799–807 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Devereux, J., Haeberli, P. & Smithies, O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids. Res. 12, 387–395 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu, Z., Horwich, A.L. & Sigler, P.B. The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex. Nature 388, 741–750 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Zavialov, A.V. et al. Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. Cell 113, 587–596 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Creighton, T.E. Proteins: Structures and Molecular Properties (W.H. Freeman, New York, 1993).

    Google Scholar 

  24. Koppenol, W.H. & Margoliash, E. The asymmetric distribution of charges on the surface of horse cytochrome c. Functional implications. J. Biol. Chem. 257, 4426–4437 (1982).

    CAS  PubMed  Google Scholar 

  25. Neidhardt, F.C., Ingraham, J.L. & Schaechter, M. Physiology of the Bacterial Cell: A Molecular Approach (Sinauer Associates, Sunderland, Massachusetts, USA, 1990).

    Google Scholar 

  26. Skerra, A. Lipocalins as a scaffold. Biochim. Biophys. Acta 1482, 337–350 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol. 229, 105–124 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  29. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002).

    Article  PubMed  Google Scholar 

  30. De la Fortelle, E., Irwin, J. & Bricogne, G. SHARP: a maximum-likelihood heavy atom parameter refinement and phasing program for the MIR and MAD methods. In Crystallographic Computing Vol. 7 (eds. Bourne, P.E. & Watenpaugh, K.D.) (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  31. Oldfield, T.J. A number of real-space torsion-angle refinement techniques for proteins, nucleic acids, ligands and solvent. Acta Crystallogr. D 57, 82–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Ramachandran, G.N. & Sasisekharan, V. Conformation of polypeptides and proteins. Adv. Prot. Chem. 23, 283–437 (1968).

    CAS  Google Scholar 

  33. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallog. 24, 946–950 (1991).

    Article  Google Scholar 

  34. Merrit, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  Google Scholar 

  35. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  PubMed  Google Scholar 

  37. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barton, G.J. ALSCRIPT. A tool to format multiple sequence alignments. Protein Eng. 6, 37–40 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Glaser, F. et al. ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19, 163–164 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Tao, P., Wang, R. & Pai, L. Calculating partition coefficients of peptides by the addition method. J. Mol. Model. 5, 189–195 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Danzer for help with the preparation and crystallization of Skp, G. Reil for mass spectrometric analysis of SeMet derivatives, and the European Molecular Biology Laboratory Grenoble Outstation, in particular M. Walsh, for supporting measurements at the European Synchrotron Radiation Facility under the European Union Improving Human Potential Programme. This work was supported by the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Skerra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Representative 2FoFc electron density from the prong of chain C contoured at 1.0 σ. (PDF 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korndörfer, I., Dommel, M. & Skerra, A. Structure of the periplasmic chaperone Skp suggests functional similarity with cytosolic chaperones despite differing architecture. Nat Struct Mol Biol 11, 1015–1020 (2004). https://doi.org/10.1038/nsmb828

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb828

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing