Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of human potassium channel inactivation by editing of a small mRNA hairpin

Abstract

Genomic recoding by A→I RNA editing plays an important role in diversifying the proteins involved in electrical excitability. Here, we describe editing of an intronless potassium channel gene. A small region of human KV1.1 mRNA sequence directs efficient modification of one adenosine by human adenosine deaminase acting on RNA 2 (hADAR2). Mutational analysis shows that this region adopts a hairpin structure. Electrophysiological characterization reveals that the editing event (I/V) profoundly affects channel inactivation conferred by accessory β subunits. Drosophila melanogaster Shaker channels, mimicking this editing event through mutation, exhibit a similar effect. In addition, we demonstrate that mRNAs for the paralogous D. melanogaster Shab potassium channel are edited at the same position by fly ADAR—a clear example of convergent evolution driven by adenosine deamination. These results suggest an ancient and key regulatory role for this residue in KV channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Minimal KV1.1 sequence necessary for editing.
Figure 2: hKV1.1 RNA editing is directed by a small RNA hairpin.
Figure 3: Effect of editing on hKV1.1 function.
Figure 4: Functional effect of mutating equivalent position to hKV1.1 editing site in D. melanogaster Shaker K+ channel.
Figure 5: Convergence of RNA editing in D. melanogaster Shab (KV2).

Similar content being viewed by others

References

  1. Hille, B. Ion Channels of Excitable Membranes (Sinauer Associates, Sunderland, Massachusetts, USA, 2001).

    Google Scholar 

  2. Patton, D., Silva, T. & Bezanilla, F. RNA editing generates a diverse array of transcripts encoding squid KV2 K+ channels with altered functional properties. Neuron 19, 711–722 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Rosenthal, J. & Bezanilla, F. Extensive editing of mRNAs for the squid delayed rectifier K+ channel regulates subunit tetramerization. Neuron 30, 743–757 (2002)

    Article  Google Scholar 

  4. Hoopengardner, B., Bhalla, T., Staber, C. & Reenan, R. Nervous system targets of RNA editing identified by comparative genomics. Science 301, 832–836 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Seeburg, P. & Hartner, J. Regulation of ion channel/neurotransmitter receptor function by RNA editing. Curr. Opin. Neurobiol. 13, 279–283 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Higuchi, M. et al. RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75, 1361–1370 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Herb, A., Higuchi, M., Sprengel, R. & Seeburg, P. Q/R site editing in kainate receptor GluR5 and GluR6 pre-mRNAs requires distant intronic sequences. Proc. Natl. Acad. Sci. USA 93, 1875–1880 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burns, C. et al. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387, 303–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Aruscavage, P. & Bass, B. A phylogenetic analysis reveals an unusual sequence conservation within introns involved in RNA editing. RNA 6, 257–269 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dawson, T., Sansam, C. & Emeson, R. Structure and sequence determinants required for the RNA editing of ADAR2 substrates. J. Biol. Chem. 279, 4941–4951 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, Y., Holmgren, M., Jurman, M. & Yellen, G. Gated access to the pore of a voltage-dependent K+ channel. Neuron 19, 175–184 (1997).

    Article  PubMed  Google Scholar 

  13. Doyle, D. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Zhou, M., Morais-Cabral, J., Mann, S. & MacKinnon, R. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411, 657–661 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Rettig, J. et al. Inactivation properties of voltage-gated K+ channels altered by presence of β-subunit. Nature 369, 289–294 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Singer-Lahat, D., Dascal, N. & Lotan, I. Modal behavior of the Kv1.1 channel conferred by the Kvβ1.1 subunit and its regulation by dephosphorylation of Kv1.1. Pflugers Arch. 439, 18–26 (1999).

    CAS  PubMed  Google Scholar 

  17. Jing, J. et al. Fast inactivation of a brain K+ channel composed of Kv1.1 and Kvβ1.1 subunits modulated by G protein β γ subunits. EMBO J. 18, 1245–1256 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Levin, G. et al. Phosphorylation of a K+ channel α subunit modulates the inactivation conferred by a β subunit. Involvement of cytoskeleton. J. Biol. Chem. 271, 29321–29328 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Ivanina, T. et al. Phosphorylation by protein kinase A of RCK1 K+ channels expressed in Xenopus oocytes. Biochemistry 33, 8786–8792 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Z., Kiehn, J., Yang, Q., Brown, A.M. & Wible, B.A. Comparison of binding and block produced by alternatively spliced Kvβ1 subunits. J. Biol. Chem. 271, 28311–28317 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Hoshi, T., Zagotta, W. & Aldrich, R. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533–538 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Murrell-Lagnado, R. & Aldrich, R. Interactions of amino terminal domains of Shaker K channels with a pore blocking site studied with synthetic peptides. J. Gen. Physiol. 102, 949–975 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Murrell-Lagnado, R.D & Aldrich, R.W. Energetics of Shaker K+ channels block by inactivation peptides. J. Gen. Physiol. 102, 977–1003 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Palladino, M.J., Keegan, L.P., O'Connell, M.A. & Reenan, R.A. A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 102, 437–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Polson, A.G. & Bass, B.L. Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. EMBO J. 13, 5701–5711 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, Y., George, C., Patterson, J. & Samuel, C. Functionally distinct double-stranded RNA-binding domains associated with alternative splice site variants of the interferon-inducible double-stranded RNA-specific adenosine deaminase. J. Biol. Chem. 272, 4419–4428 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, J. et al. Widespread inosine-containing mRNA in lymphocytes regulated by ADAR1 in response to inflammation. Immunology 109, 15–23 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Demo, S.D. & Yellen, G. The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker. Neuron 7, 743–753 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Gomez-Lagunas, F. & Armstrong, C.M. The relation between ion permeation and recovery from inactivation of ShakerB K+ channels. Biophys. J. 67, 1806–1815 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baukrowitz, T. & Yellen, G. Modulation of K+ current by frequency and external [K+]: a tale of two inactivation mechanisms. Neuron 15, 951–960 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Connor, J.A. & Steven, C.F. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J Physiol. 213, 31–53 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aldrich R.W., Getting P.A. & Thompson, S.H. Mechanism of frequency-dependent broadening of molluscan neurone soma spikes. J Physiol. 291, 531–544 (1979).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Debanne, D., Guerineau, N.C., Gahwiler, B.H. & Thompson, S.M. Action-potential propagation gated by an axonal I(A)-like K+ conductance in hippocampus. Nature 389, 286–289 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Hoffman, D.A., Magee, J.C., Colbert, C.M. & Johnston, D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Giese, K.P. et al. Reduced K+ channel inactivation, spike broadening, and after-hyperpolarization in Kvβ1.1-deficient mice with impaired learning. Learn. Mem. 5, 257–273 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Herson, P.S. et al. A mouse model of episodic ataxia type-1. Nat. Neurosci. 6, 378–383 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Kawahara, Y. et al. Glutamate receptors: RNA editing and death of motor neurons. Nature 427, 801 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Higuchi, M. et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Kamb, A., Tseng-Crank, J. & Tanouye, M.A. Multiple products of the Drosophila Shaker gene may contribute to potassium channel diversity. Neuron 1, 421–430 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Jurman, M.E., Boland, L.M., Liu, Y. & Yellen, G. Visual identification of individual transfected cells for electrophysiology using antibody-coated beads. Biotechniques 17, 876–881 (1994).

    CAS  PubMed  Google Scholar 

  41. Hamill, O.P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F.J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Srikumar for preparing the Shaker I470V mutant and for a steady supply of transfected cells; M. Callahan and M. Caudill for assistance with tissue culture; D. Lazinski for the gift of ADAR1 and ADAR2 expression constructs; and C. Deutsch, L. Jaffe, J. Mindell and K. Swartz for critical reading of the manuscript. We also thank M. O'Connell and L. Keegan for facilitating this collaboration. This work was supported by a grant from the US National Institutes of Health (NIH) to R.R. and funds from the NIH Intramural Research Program to M.H.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miguel Holmgren or Robert Reenan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhalla, T., Rosenthal, J., Holmgren, M. et al. Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nat Struct Mol Biol 11, 950–956 (2004). https://doi.org/10.1038/nsmb825

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb825

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing