Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CBFβ allosterically regulates the Runx1 Runt domain via a dynamic conformational equilibrium

Abstract

Core binding factors (CBFs) are heterodimeric transcription factors consisting of a DNA-binding CBFα subunit and non-DNA-binding CBFβ subunit. The CBFβ subunit increases the affinity of the DNA-binding Runt domain of CBFα for DNA while making no direct contacts to the DNA. We present evidence for conformational exchange in the S-switch region in a Runt domain–DNA complex that is quenched upon CBFβ binding. Analysis of 15N backbone relaxation parameters shows that binding of CBFβ reduces the backbone dynamics in the microsecond-to-millisecond time frame for several regions of the Runt domain that make energetically important contacts with the DNA. The DNA also undergoes conformational exchange in the Runt domain–DNA complex that is quenched in the presence of CBFβ. Our results indicate that allosteric regulation by the CBFβ subunit is mediated by a shift in an existing dynamic conformational equilibrium of both the Runt domain and DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 13C-1H HSQC spectra of labeled DNA.
Figure 2: Results of ModelFree analysis (Ss2, τe, Rex) of the relaxation data and R1R2 values plotted versus the primary sequence for residues in the Runt domain–DNA and CBFβ–Runt domain–DNA complexes.
Figure 3: Differences in the ModelFree parameters for residues for which values are available in both complexes (values were calculated as CBFβ–Runt domain–DNA minus Runt domain–DNA).
Figure 4: Ribbon representations of the structure of the Runt domain (PDB entry 1H9D) colored according to dynamic behavior.
Figure 5: ITC measurements of the binding of the Runt domain (RD) and the RD–CBFβ complex to DNA.
Figure 6: Alignment of the Runt domain and DNA from the CBFβ–Runt domain–DNA complex (PDB entry 1H9D) and the free Runt domain (PDB entry 1EAN).

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kagoshima, H. et al. The Runt-domain identifies a new family of heteromeric DNA-binding transcriptional regulatory proteins. Trends Genet. 9, 338–341 (1993).

    Article  CAS  Google Scholar 

  2. Tang, Y.Y. et al. Biophysical characterization of interactions between the core binding factor α and β subunits and DNA. FEBS Lett. 470, 167–172 (2000).

    Article  CAS  Google Scholar 

  3. Bravo, J., Li, Z., Speck, N.A. & Warren, A.J. The leukemia-associated AML1 (Runx1)–CBF β complex functions as a DNA-induced molecular clamp. Nat. Struct. Biol. 8, 371–378 (2001).

    Article  CAS  Google Scholar 

  4. Tahirov, T.H. et al. Structural analyses of DNA recognition by the AML1/Runx–1 Runt domain and its allosteric control by CBFβ. Cell 104, 755–767 (2001).

    Article  CAS  Google Scholar 

  5. Backstrom, S. et al. The RUNX1 Runt domain at 1.25 Å resolution: a structural switch and specifically bound chloride ions modulate DNA binding. J. Mol. Biol. 322, 259–272 (2002).

    Article  CAS  Google Scholar 

  6. Warren, A.J., Bravo, J., Williams, R.L. & Rabbitts, T.H. Structural basis for the heterodimeric interaction between the acute leukaemia-associated transcription factors AML1 and CBFβ. EMBO J. 19, 3004–3015 (2000).

    Article  CAS  Google Scholar 

  7. Bartfeld, D. et al. DNA recognition by the RUNX1 transcription factor is mediated by an allosteric transition in the RUNT domain and by DNA bending. Structure 10, 1395–1407 (2002).

    Article  CAS  Google Scholar 

  8. Case, D.A. Molecular dynamics and NMR spin relaxation in proteins. Acc. Chem. Res. 35, 325–331 (2002).

    Article  CAS  Google Scholar 

  9. Akke, M. NMR methods for characterizing microsecond to millisecond dynamics in recognition and catalysis. Curr. Opin. Struct. Biol. 12, 642–647 (2002).

    Article  CAS  Google Scholar 

  10. Wand, A.J. Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat. Struct. Biol. 8, 926–931 (2001).

    Article  CAS  Google Scholar 

  11. Palmer, A.G. 3rd. NMR probes of molecular dynamics: overview and comparison with other techniques. Annu. Rev. Biophys. Biomol. Struct. 30, 129–155 (2001).

    Article  CAS  Google Scholar 

  12. Ishima, R. & Torchia, D.A. Protein dynamics from NMR. Nat. Struct. Biol. 7, 740–743 (2000).

    Article  CAS  Google Scholar 

  13. Kay, L.E. Protein dynamics from NMR. Biochem. Cell Biol. 76, 145–152 (1998).

    Article  CAS  Google Scholar 

  14. Berardi, M.J. et al. The Ig fold of the core binding factor α Runt domain is a member of a family of structurally and functionally related Ig-fold DNA-binding domains. Structure 7, 1247–1256 (1999).

    Article  CAS  Google Scholar 

  15. Yan, J. & Bushweller, J.H. An optimized PCR-based procedure for production of 13C/15N-labeled DNA. Biochem. Biophys. Res. Commun. 284, 295–300 (2001).

    Article  CAS  Google Scholar 

  16. Nekludova, L. & Pabo, C.O. Distinctive DNA conformation with enlarged major groove is found in Zn-finger–DNA and other protein–DNA complexes. Proc. Natl. Acad. Sci. USA 91, 6948–6952 (1994).

    Article  CAS  Google Scholar 

  17. Lipari, G. & Szabo, A. model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    Article  CAS  Google Scholar 

  18. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules 2. Analysis of experimental results. J. Am. Chem. Soc. 104, 4559–4570 (1982).

    Article  CAS  Google Scholar 

  19. Kneller, J.M., Lu, M. & Bracken, C. An effective method for the discrimination of motional anisotropy and chemical exchange. J. Am. Chem. Soc. 124, 1852–1853 (2002).

    Article  CAS  Google Scholar 

  20. Li, Z. et al. Energetic contribution of residues in the Runx1 Runt domain to DNA binding. J. Biol. Chem. 278, 33088–33096 (2003).

    Article  CAS  Google Scholar 

  21. Zhang, L. et al. Mutagenesis of the Runt domain defines two energetic hotspots for heterodimerization with the core binding factor β subunit. J. Biol. Chem. 278, 33097–33104 (2003).

    Article  CAS  Google Scholar 

  22. Bartfeld, D. et al. DNA recognition by the RUNX1 transcription factor is mediated by an allosteric transition in the RUNT domain and by DNA bending. Structure 10, 1–20 (2002).

    Article  Google Scholar 

  23. Backstrom, S. et al. The RUNX1 Runt domain at 1.25Å resolution: a structural switch and specifically bound chloride ions modulate DNA binding. J. Mol. Biol. 322, 259–272 (2002).

    Article  CAS  Google Scholar 

  24. Volkman, B.F., Lipson, D., Wemmer, D.E. & Kern, D. Two-state allosteric behavior in a single-domain signaling protein. Science 291, 2429–2433 (2001).

    Article  CAS  Google Scholar 

  25. Hammes, G.G. Multiple conformational changes in enzyme catalysis. Biochemistry 41, 8221–8228 (2002).

    Article  CAS  Google Scholar 

  26. Howlett, G.J., Balckburn, M.N., Compton, J.G. & Schachman, H.K. Allosteric regulation of aspartate transcarbamoylase. Analysis of the structural and functional behavior in terms of a two-state model. Biochemistry 16, 5091–5100 (1977).

    Article  CAS  Google Scholar 

  27. Hammes, G.G. & Wu, C.W. Kinetics of allosteric enzymes. Annu. Rev. Biophys. Bioeng. 3, 1–33 (1974).

    Article  CAS  Google Scholar 

  28. Sakash, J.B. & Kantrowitz, E.R. The contribution of individual interchain interactions to the stabilization of the T and R states of Escherichia coli aspartate transcarbamoylase. J. Biol. Chem. 275, 28701–28707 (2000).

    Article  CAS  Google Scholar 

  29. Chan, R.S. et al. The role of intersubunit interactions for the stabilization of the T state of Escherichia coli aspartate transcarbamoylase. J. Biol. Chem. 277, 49755–49760 (2002).

    Article  CAS  Google Scholar 

  30. Lipscomb, W.N. Aspartate transcarbamylase from Escherichia coli: activity and regulation. Adv. Enzymol. Relat. Areas Mol. Biol. 68, 67–151 (1994).

    CAS  PubMed  Google Scholar 

  31. Crute, B.E., Lewis, A.F., Wu, Z., Bushweller, J.H. & Speck, N.A. Biochemical and biophysical properties of the core-binding factor α2 (AML1) DNA-binding domain. J. Biol. Chem. 271, 26251–26260 (1996).

    Article  CAS  Google Scholar 

  32. Farrow, N.A. et al. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994).

    Article  CAS  Google Scholar 

  33. Palmer, A.G. III, Rance, M. & Wright, P.E. Intramolecular motions of a zinc finger DNA-binding domain from Xfin characterized by proton-detected natural abundance 13C heteronuclear NMR spectroscopy. J. Am. Chem. Soc. 113, 4371–4380 (1991).

    Article  CAS  Google Scholar 

  34. Nicholson, L.K. et al. Dynamics of methyl groups in proteins as studied by proton-detected 13C NMR spectroscopy. Application to the leucine residues of staphylococcal nuclease. Biochemistry 31, 5253–5263 (1992).

    Article  CAS  Google Scholar 

  35. Pawley, N.H., Wang, C., Koide, S. & Nicholson, L.K. An improved method for distinguishing between anisotropic tumbling and chemical exchange in analysis of 15N relaxation parameters. J. Biomol. NMR 20, 149–165 (2001).

    Article  CAS  Google Scholar 

  36. Kay, L.E., Torchia, D.A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972–8979 (1989).

    Article  CAS  Google Scholar 

  37. Lee, L.K., Rance, M., Chazin, W.J. & Palmer, A.G. 3rd. Rotational diffusion anisotropy of proteins from simultaneous analysis of 15N and 13C α nuclear spin relaxation. J. Biomol. NMR 9, 287–298 (1997).

    Article  CAS  Google Scholar 

  38. Tjandra, N., Feller, S.E., Pastor, R.W. & Bax, A. Rotational diffusion anisotropy of human ubiquitin from N-15 NMR relaxation. J. Am. Chem. Soc. 117, 12562–12566 (1995).

    Article  CAS  Google Scholar 

  39. Bruschweiler, R., Liao, X.B. & Wright, P.E. Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. Science 268, 886–889 (1995).

    Article  CAS  Google Scholar 

  40. Mandel, A.M., Akke, M. & Palmer, A.G. 3rd. Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol. 246, 144–163 (1995).

    Article  CAS  Google Scholar 

  41. Pierce, M.M., Raman, C.S. & Nall, B.T. Isothermal titration calorimetry of protein-protein interactions. Methods 19, 213–221 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants R01 AI39536 and R01 AI42097 from the US Public Health Service (US National Institutes of Health) to J.H.B. We thank R. Biltonen for a number of useful discussions in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H Bushweller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Selected regions of 15N-1H HSQC spectra of 15N specifically labeled Runt domain (RD) in the RD–DNA and CBFβ–RD–DNA complexes. (PDF 185 kb)

Supplementary Fig. 2

15N T1 and T2 relaxation curves. (PDF 165 kb)

Supplementary Fig. 3

Plots of relaxation values versus sequence. (PDF 96 kb)

Supplementary Table 1

Relaxation and ModelFree data for Runt domain–DNA and CBFβ–Runt domain–DNA complexes. (PDF 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, J., Liu, Y., Lukasik, S. et al. CBFβ allosterically regulates the Runx1 Runt domain via a dynamic conformational equilibrium. Nat Struct Mol Biol 11, 901–906 (2004). https://doi.org/10.1038/nsmb819

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb819

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing