Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The ternary complex of antithrombin–anhydrothrombin–heparin reveals the basis of inhibitor specificity

Abstract

Antithrombin, the principal physiological inhibitor of the blood coagulation proteinase thrombin, requires heparin as a cofactor. We report the crystal structure of the rate-determining encounter complex formed between antithrombin, anhydrothrombin and an optimal synthetic 16-mer oligosaccharide. The antithrombin reactive center loop projects from the serpin body and adopts a canonical conformation that makes extensive backbone and side chain contacts from P5 to P6′ with thrombin's restrictive specificity pockets, including residues in the 60-loop. These contacts rationalize many earlier mutagenesis studies on thrombin specificity. The 16-mer oligosaccharide is just long enough to form the predicted bridge between the high-affinity pentasaccharide-binding site on antithrombin and the highly basic exosite 2 on thrombin, validating the design strategy for this synthetic heparin. The protein-protein and protein-oligosaccharide interactions together explain the basis for heparin activation of antithrombin as a thrombin inhibitor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthetic 16-mer heparin mimetic, SR123781A, used in this study.
Figure 2: Stereo ribbon representation of the ternary complex.
Figure 3: The antithrombin reactive center loop conformation and contacts with thrombin.
Figure 4: Stereo representation of the overlay of the RCL conformations of the antithrombin in the present structure (cyan) and in pentasaccharide-activated antithrombin (gold).
Figure 5: The defined heparin-binding regions in the ternary complex.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Olson, S.T. & Björk, I. Mechanism of action of heparin and heparin-like antithrombotics. Persp. Drug Discovery Design 1, 479–501 (1994).

    Article  CAS  Google Scholar 

  2. Levine, M.N. & Hirsh, J. Clinical use of low molecular weight heparins and heparinoids. Sem. Thromb. Hemost. 14, 116–125 (1988).

    Article  CAS  Google Scholar 

  3. Gettins, P.G.W. Serpin structure, mechanism and function. Chem. Rev. 102, 4751–4804 (2002).

    Article  CAS  Google Scholar 

  4. Desai, U., Petitou, M., Björk, I. & Olson, S.T. Mechanism of heparin activation of antithrombin. Role of individual residues of the pentasaccharide in the recognition of native and activated states of antithrombin. J. Biol. Chem. 273, 7478–7487 (1998).

    Article  CAS  Google Scholar 

  5. Desai, U., Petitou, M., Björk, I. & Olson, S.T. Mechanism of heparin activation of antithrombin. Evidence for an induced-fit model of allosteric activation involving two interaction subsites. Biochemistry 37, 13033–13041 (1998).

    Article  CAS  Google Scholar 

  6. Huntington, J.A., Olson, S.T., Fan, B. & Gettins, P.G.W. Mechanism of heparin activation of antithrombin. Evidence for reactive center loop pre-insertion with expulsion upon heparin binding. Biochemistry 35, 8495–8503 (1996).

    Article  CAS  Google Scholar 

  7. Olson, S.T. & Björk, I. Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithrombin-thrombin reaction. Elucidation from salt concentration effects. J. Biol. Chem. 266, 6353–6364 (1991).

    CAS  PubMed  Google Scholar 

  8. Herbert, J.M. et al. SR123781A, a synthetic heparin mimetic. Thromb. Haemost. 85, 852–860 (2001).

    Article  CAS  Google Scholar 

  9. Petitou, M. et al. Synthesis of thrombin-inhibiting heparin mimetics without side effects. Nature 398, 417–422 (1999).

    Article  CAS  Google Scholar 

  10. Grootenhuis, P.D.J., Westerduin, P., Meuleman, D., Petitou, M. & van Boeckel, C.A. Rational design of synthetic heparin analogues with tailor-made coagulation inhibitory activity. Nat. Struct. Biol. 2, 736–739 (1995).

    Article  CAS  Google Scholar 

  11. Olson, S.T., Halvorson, H.R. & Björk, I. Quantitative characterization of the thrombin-heparin interaction. Discrimination between specific and nonspecific binding models. J. Biol. Chem. 266, 6342–6352 (1991).

    CAS  PubMed  Google Scholar 

  12. Jin, L. et al. The anticoagulant activation of antithrombin by heparin. Proc. Natl. Acad. Sci. USA 94, 14683–14688 (1997).

    Article  CAS  Google Scholar 

  13. Baglin, T.P., Carrell, R.W., Church, F.C., Esmon, C.T. & Huntington, J.A. Crystal structure of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism. Proc. Natl. Acad. Sci. USA 99, 11079–11084 (2002).

    Article  CAS  Google Scholar 

  14. Skinner, R. et al. The 2.6Å structure of antithrombin indicates a conformational change at the heparin binding site. J. Mol. Biol. 266, 601–609 (1997).

    Article  CAS  Google Scholar 

  15. Ye, S. et al. The structure of a Michaelis serpin–protease complex. Nature Struct. Biol. 8, 979–983 (2001).

    Article  CAS  Google Scholar 

  16. Dementiev, A., Simonovic, M., Volz, K. & Gettins, P.G.W. Canonical inhibitor-like interactions explain reactivity of α1-proteinase inhibitor Pittsburgh and antithrombin with proteinases. J. Biol. Chem. 278, 37881–37887 (2003).

    Article  CAS  Google Scholar 

  17. Rezaie, A.R. Role of Leu99 of thrombin in determining the P2 specificity of serpins. Biochemistry 36, 7437–7446 (1997).

    Article  CAS  Google Scholar 

  18. Chuang, Y.-J., Gettins, P.G.W. & Olson, S.T. Importance of the P2 glycine of antithrombin in target proteinase specificity, heparin activation and the efficiency of proteinase trapping as revealed by a P2 Gly→Pro mutation. J. Biol. Chem. 274, 28142–28149 (1999).

    Article  CAS  Google Scholar 

  19. Carrell, R.W., Stein, P.E., Fermi, G. & Wardell, M.R. Biological implications of a 3Å structure of dimeric antithrombin. Structure 2, 257–270 (1994).

    Article  CAS  Google Scholar 

  20. Skinner, R. et al. Implications for function and therapy of a 2.9Å structure of binary-complexed antithrombin. J. Mol. Biol. 283, 9–14 (1998).

    Article  CAS  Google Scholar 

  21. Huntington, J.A., McCoy, A., Pei, X., Gettins, P.G.W. & Carrell, R.W. 2.85Å structure of antithrombin variant S380C-fluorescein reveals the trigger for allosteric activation. J. Biol. Chem. 275, 15377–15383 (1999).

    Article  Google Scholar 

  22. Schreuder, H.A. et al. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nat. Struct. Biol. 1, 48–54 (1994).

    Article  CAS  Google Scholar 

  23. Casu, B. et al. The structure of heparin oligosaccharide fragments with high anti-(factor Xa) activity containing the minimal antithrombin III-binding sequence. Chemical and 13C nuclear magnetic resonance studies. Biochem. J. 197, 599–609 (1981).

    Article  CAS  Google Scholar 

  24. Choay, J. et al. Structure-activity relationship in heparin: a synthetic pentasaccharide with high affinity for antithrombin III and eliciting high anti-factor Xa activity. Biochem. Biophys. Res. Commun. 116, 492–499 (1983).

    Article  CAS  Google Scholar 

  25. Laurent, T.C., Tengblad, A., Thunberg, L., Höök, M. & Lindahl, U. The molecular weight dependence of the anti-coagulant activity of heparin. Biochem. J. 175, 691–701 (1978).

    Article  CAS  Google Scholar 

  26. Sheehan, J.P. & Sadler, J.E. Molecular mapping of the heparin-binding exosite of thrombin. Proc. Natl. Acad. Sci. USA 91, 5518–5522 (1994).

    Article  CAS  Google Scholar 

  27. Petitou, M., Lormeau, J.-C. & Choay, J. Chemical synthesis of glycosaminoglycans: New approaches to antithrombic drugs. Nature 350 (suppl.), 30–33 (1991).

    CAS  PubMed  Google Scholar 

  28. Li, W., Johnson, D.J.D., Esmon, C.T. & Huntington, J.A. 2.5Å structure of the antithrombin–thrombin–heparin ternary complex reveals the antithrombotic mechanism of heparin. Nat. Struct. Mol. Biol. 11, advance online publication, 15 August 2004 (doi:10.1038/nsmb811).

  29. Rezaie, A.R. Reactivities of the S2 and S3 subsite residues of thrombin with the native and heparin-induced conformers of antithrombin. Protein Sci. 7, 349–357 (1998).

    Article  CAS  Google Scholar 

  30. Rezaie, A.R. & Olson, S.T. Contribution of lysine 60f to S1′ specificity of thrombin. Biochemistry 36, 1026–1033 (1997).

    Article  CAS  Google Scholar 

  31. Rezaie, A.R. Tryptophan 60-D in the B-insertion loop of thrombin modulated the thrombin-antithrombin reaction. Biochemistry 35, 1918–1924 (1996).

    Article  CAS  Google Scholar 

  32. Marqu, P.-E., Spuntarelli, R., Juliano, L., Aiach, M. & Le Bonniec, B.F. The role of Glu192 in the allosteric control of the S2′ and S3′ subsites of thrombin. J. Biol. Chem. 275, 809–816 (2000).

    Article  Google Scholar 

  33. Bode, W., Turk, D. & Karshikov, A. The refined 1.9Å X-ray crystal structure of D-Phe-Pro-Arg-chloromethylketone-inhibited human α-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein Sci. 1, 426–471 (1992).

    Article  CAS  Google Scholar 

  34. He, X.H., Ye, J., Esmon, C.T. & Rezaie, A.R. Influence of arginines 93, 97, and 101 of thrombin to its functional specificity. Biochemistry 36, 8969–8976 (1997).

    Article  CAS  Google Scholar 

  35. Meagher, J.L., Huntington, J.A., Fan, B. & Gettins, P.G.W. Role of arginine 132 and lysine 133 in heparin binding to, and activation of, antithrombin. J. Biol. Chem. 271, 29353–29358 (1996).

    Article  CAS  Google Scholar 

  36. Ngai, P.K. & Chang, J.-Y. A novel one-step purification of human α-thrombin after direct activation of crude prothrombin enriched from plasma. Biochem. J. 280, 805–808 (1991).

    Article  CAS  Google Scholar 

  37. Ashton, R.W. & Scheraga, H.A. Preparation and characterization of anhydrothrombin. Biochemistry 34, 6454–6463 (1995).

    Article  CAS  Google Scholar 

  38. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 461–472 (1997).

    Article  Google Scholar 

  39. Brünger, A.T. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  40. Choay, J., Lormeau, J.-C. & Petitou, M. Low molecular weight oligosaccharides active in plasma against factor Xa. Ann. Pharm. Fr. 39, 37–44 (1981).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants HL49234 and HL64013 from the US National Institutes of Health. Data were collected on the SERCAT ID beamline at the Advanced Photon Source (APS), Argonne National Laboratory. Use of APS is supported by the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G W Gettins.

Ethics declarations

Competing interests

M.P. and J.-M.H. are currently employees of Sanofi, the manufacturer of the heparin mimetic SR123781A, which was used in this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dementiev, A., Petitou, M., Herbert, JM. et al. The ternary complex of antithrombin–anhydrothrombin–heparin reveals the basis of inhibitor specificity. Nat Struct Mol Biol 11, 863–867 (2004). https://doi.org/10.1038/nsmb810

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb810

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing