Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure-function defects of human mitochondrial DNA polymerase in autosomal dominant progressive external ophthalmoplegia

Abstract

Progressive external ophthalmoplegia (PEO) is a mitochondrial disorder associated with mutations in the POLG gene encoding the mitochondrial DNA polymerase (pol γ). Four autosomal dominant mutations that cause PEO encode the amino acid substitutions G923D, R943H, Y955C and A957S in the polymerase domain of pol γ. A homology model of the pol γ catalytic domain in complex with DNA was developed to investigate the effects of these mutations. Two mutations causing the most severe disease phenotype, Y955C and R943H, change residues that directly interact with the incoming dNTP. Polymerase mutants exhibit 0.03–30% wild-type polymerase activity and a 2- to 35-fold decrease in nucleotide selectivity in vitro. The reduced selectivity and catalytic efficiency of the autosomal dominant PEO mutants predict in vivo dysfunction, and the extent of biochemical defects correlates with the clinical severity of the disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PEO mutations in the human DNA pol γ.
Figure 2: Primer extension of PEO mutants of DNA polymerase γ on singly primed M13 DNA.
Figure 3: Modeled structural alterations produced by dominant PEO mutations.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Wallace, D.C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).

    Article  CAS  Google Scholar 

  2. Zeviani, M. et al. An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature 339, 309–311 (1989).

    Article  CAS  Google Scholar 

  3. Wallace, D.C. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256, 628–632 (1992).

    Article  CAS  Google Scholar 

  4. Hirano, M. et al. Defects of intergenomic communication: autosomal disorders that cause multiple deletions and depletion of mitochondrial DNA. Semin. Cell. Dev. Biol. 12, 417–427 (2001).

    Article  CAS  Google Scholar 

  5. Bohlega, S. et al. Multiple mitochondrial DNA deletions associated with autosomal recessive ophthalmoplegia and severe cardiomyopathy. Neurology 46, 1329–1334 (1996).

    Article  CAS  Google Scholar 

  6. Suomalainen, A. et al. Autosomal dominant progressive external ophthalmoplegia with multiple deletions of mtDNA: clinical, biochemical, and molecular genetic features of the 10q-linked disease. Neurology 48, 1244–1253 (1997).

    Article  CAS  Google Scholar 

  7. Kaukonen, J. et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 289, 782–785 (2000).

    Article  CAS  Google Scholar 

  8. Spelbrink, J.N. et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat. Genet. 28, 223–231 (2001).

    Article  CAS  Google Scholar 

  9. Van Goethem, G., Dermaut, B., Lofgren, A., Martin, J.J. & Van Broeckhoven, C. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat. Genet. 28, 211–212 (2001).

    Article  CAS  Google Scholar 

  10. Nishino, I., Spinazzola, A. & Hirano, M. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 283, 689–692 (1999).

    Article  CAS  Google Scholar 

  11. Ropp, P.A. & Copeland, W.C. Cloning and characterization of the human mitochondrial DNA polymerase, DNA polymerase γ. Genomics 36, 449–458 (1996).

    Article  CAS  Google Scholar 

  12. Lamantea, E. et al. Mutations of mitochondrial DNA polymerase γ are a frequent cause of autosomal dominant or recessive progressive external ophthalmoplegia. Ann. Neurol. 52, 211–219 (2002).

    Article  CAS  Google Scholar 

  13. Agostino, A. et al. Mutations of ANT1, Twinkle, and POLG1 in sporadic progressive external ophthalmoplegia (PEO). Neurology 60, 1354–1356 (2003).

    Article  CAS  Google Scholar 

  14. Filosto, M. et al. Clinical and genetic heterogeneity in progressive external ophthalmoplegia due to mutations in polymerase γ. Arch. Neurol. 60, 1279–1284 (2003).

    Article  Google Scholar 

  15. Delarue, M., Poch, O., Tordo, N., Moras, D. & Argos, P. An attempt to unify the structure of polymerases. Protein Eng. 3, 461–467 (1990).

    Article  CAS  Google Scholar 

  16. Ito, J. & Braithwaite, D.K. Yeast mitochondrial DNA polymerase is related to the family A DNA polymerases. Nucleic Acids Res. 18, 6716 (1990).

    Article  CAS  Google Scholar 

  17. Ito, J. & Braithwaite, D.K. Compilation and alignment of DNA polymerase sequences. Nucleic Acids Res. 19, 4045–4057 (1991).

    Article  CAS  Google Scholar 

  18. Ollis, D.L., Brick, P., Hamlin, R., Xuong, N.G. & Steitz, T.A. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313, 762–766 (1985).

    Article  CAS  Google Scholar 

  19. Kiefer, J.R., Mao, C., Braman, J.C. & Beese, L.S. Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 391, 304–307 (1998).

    Article  CAS  Google Scholar 

  20. Doublie, S., Tabor, S., Long, A.M., Richardson, C.C. & Ellenberger, T. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391, 251–258 (1998).

    Article  CAS  Google Scholar 

  21. Longley, M.J., Ropp, P.A., Lim, S.E. & Copeland, W.C. Characterization of the native and recombinant catalytic subunit of human DNA polymerase γ: identification of residues critical for exonuclease activity and dideoxynucleotide sensitivity. Biochemistry 37, 10529–10539 (1998).

    Article  CAS  Google Scholar 

  22. Lim, S.E., Longley, M.J. & Copeland, W.C. The mitochondrial p55 accessory subunit of human DNA polymerase γ enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J. Biol. Chem. 274, 38197–38203 (1999).

    Article  CAS  Google Scholar 

  23. Longley, M.J., Nguyen, D., Kunkel, T.A. & Copeland, W.C. The fidelity of human DNA polymerase γ with and without exonucleolytic proofreading and the p55 accessory subunit. J. Biol. Chem. 276, 38555–38562 (2001).

    Article  CAS  Google Scholar 

  24. Lim, S.E., Ponamarev, M.V., Longley, M.J. & Copeland, W.C. Structural determinants in human DNA polymerase γ account for mitochondrial toxicity from nucleoside analogs. J. Mol. Biol. 329, 45–57 (2003).

    Article  CAS  Google Scholar 

  25. Ponamarev, M.V., Longley, M.J., Nguyen, D., Kunkel, T.A. & Copeland, W.C. Active site mutation in DNA polymerase γ associated with progressive external ophthalmoplegia causes error-prone DNA synthesis. J. Biol. Chem. 277, 15225–15228 (2002).

    Article  CAS  Google Scholar 

  26. Del Bo, R. et al. Remarkable infidelity of polymerase γA associated with mutations in POLG1 exonuclease domain. Neurology 61, 903–908 (2003).

    Article  CAS  Google Scholar 

  27. Van Goethem, G. et al. Recessive POLG mutations presenting with sensory and ataxic neuropathy in compound heterozygote patients with progressive external ophthalmoplegia. Neuromuscul. Disord. 13, 133–142 (2003).

    Article  CAS  Google Scholar 

  28. Astatke, M., Grindley, N.D. & Joyce, C.M. Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment). J. Biol. Chem. 270, 1945–1954 (1995).

    Article  CAS  Google Scholar 

  29. Lim, S.E. & Copeland, W.C. Differential incorporation and removal of antiviral deoxynucleotides by human DNA polymerase γ. J. Biol. Chem. 276, 23616–23623 (2001).

    Article  CAS  Google Scholar 

  30. Boosalis, M.S., Petruska, J. & Goodman, M.F. DNA polymerase insertion fidelity. Gel assay for site-specific kinetics. J. Biol. Chem. 262, 14689–14696 (1987).

    CAS  PubMed  Google Scholar 

  31. Mendelman, L.V., Petruska, J. & Goodman, M.F. Base mispair extension kinetics. Comparison of DNA polymerase α and reverse transcriptase. J. Biol. Chem. 265, 2338–2346 (1990).

    CAS  PubMed  Google Scholar 

  32. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  33. Bienstock, R.J. & Copeland, W.C. Molecular insights into NRTI inhibition and mitochondrial toxicity revealed from a structural model of the human mitochondrial DNA polymerase. Mitochondrion (in the press).

  34. Notredame, C., Higgins, D.G. & Heringa, J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000).

    Article  CAS  Google Scholar 

  35. Polesky, A.H., Steitz, T.A., Grindley, N.D. & Joyce, C.M. Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli. J. Biol. Chem. 265, 14579–14591 (1990).

    CAS  PubMed  Google Scholar 

  36. Bradford, M.M. A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Clark for technical assistance with production of the mutant derivatives and thank T. Kunkel and J. Santos for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C Copeland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

An example of a thermolysin digestion experiment of wild type DNA polymerase γ and one of its mutant derivatives, R943H. (PDF 274 kb)

Supplementary Fig. 2

DNA-binding assay of the mutant pol γ polymerase. (PDF 137 kb)

Supplementary Table 1

Single nucleotide mis-insertion assay with oligonucleotide substrates. (PDF 22 kb)

Supplementary Table 2

Nucleotide mis-insertion assay with poly(dA)–oligo(dT)12–18. (PDF 24 kb)

Supplementary Table 3

A·C mispair extension. (PDF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graziewicz, M., Longley, M., Bienstock, R. et al. Structure-function defects of human mitochondrial DNA polymerase in autosomal dominant progressive external ophthalmoplegia. Nat Struct Mol Biol 11, 770–776 (2004). https://doi.org/10.1038/nsmb805

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb805

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing