Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PH domain of ELMO functions in trans to regulate Rac activation via Dock180

Abstract

The members of the Dock180 superfamily of proteins are novel guanine nucleotide exchange factors (GEF) for Rho family GTPases and are linked to multiple biological processes from worms to mammals. ELMO is a critical regulator of Dock180, and the Dock180–ELMO complex functions as a bipartite GEF for Rac. We identified a mechanism wherein the PH domain of ELMO, by binding the Dock180–Rac complex in trans, stabilizes Rac in the nucleotide-free transition state. Mutagenesis studies reveal that this ELMO PH domain–dependent regulation is essential for the Dock180–ELMO complex to function in phagocytosis and cell migration. Genetic rescue studies in Caenorhabditis elegans using ELMO and its homolog CED-12 support the above observations in vivo. These data reveal a new mode of action of PH domains and a novel, evolutionarily conserved mechanism by which a bipartite GEF can activate Rac.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ELMO forms a trimeric complex with Dock180 and nucleotide-free Rac.
Figure 2: PH domain of ELMO is responsible for the formation of trimeric complex with Dock180 and Rac.
Figure 3: W665A or the FRK mutation within the PH domain of ELMO disrupts the formation of trimeric complex.
Figure 4: Formation of trimeric complex is essential for the Rac activation by Dock180–ELMO complex.
Figure 5: The ELMO PH domain–dependent Rac activation is essential for the Dock180–ELMO complex to function in phagocytosis and cell migration.

Similar content being viewed by others

References

  1. Cote, J.F. & Vuori, K. Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J. Cell Sci. 115, 4901–4913 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Brugnera, E. et al. Unconventional Rac-GEF activity is mediated through the Dock180–ELMO complex. Nat. Cell Biol. 4, 574–582 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Meller, N., Irani-Tehrani, M., Kiosses, W.B., Del Pozo, M.A. & Schwartz, M.A. Zizimin1, a novel Cdc42 activator, reveals a new GEF domain for Rho proteins. Nat. Cell Biol. 4, 639–647 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Yajnik, V. et al. DOCK4, a GTPase activator, is disrupted during tumorigenesis. Cell 112, 637–684 (2003).

    Article  Google Scholar 

  5. Fukui, Y. et al. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature 412, 826–831 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Albert, M., Kim, J. & Birge, R. avb5 integrin recruits the CrkII–Dock180–Rac1 complex for phagocytosis of apoptotic cells. Nat. Cell Biol. 2, 899–905 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Gumienny, T.L. et al. CED-12/ELMO, a novel member of the crkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107, 27–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Grimsley, C.M. et al. Dock180 and ELMO1 proteins cooperate to promote evolutionarily conserved Rac-dependent cell migration. J Biol. Chem. 279, 6087–6097 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Kiyokawa, E. et al. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev. 12, 3331–3336 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duchek, P., Somogyi, K., Jekely, G., Beccari, S. & Rorth, P. Guidance of cell migration by the Drosophila pdgf/vegf receptor. Cell 107, 17–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Erickson, M.R., Galletta, B.J. & Abmayr, S.M. Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization. J. Cell Biol. 138, 589–603 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nolan, K.M. et al. Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac signaling pathway utilized for multiple developmental processes. Genes Dev. 12, 3337–3342 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reddien, P.W. & Horvitz, H.R. CED-12/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nat. Cell Biol. 2, 131–136 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, Y.C. & Horvitz, H.R. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 392, 501–504 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Lundquist, E.A., Reddien, P.W., Hartwieg, E., Horvirz, H.R. & Bargmann, C.I. Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. Development 128, 4475–4488 (2001).

    CAS  PubMed  Google Scholar 

  16. Wu, Y.C., Tsai, M.C., Cheng, L.C., Chou, C.J. & Weng, N.Y. C. elegans CED-12 acts in the conserved crkII/DOCK180/Rac pathway to control cell migration and cell corpse engulfment. Dev. Cell 1, 491–502 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Zhou, Z., Caron, E., Hartwieg, E., Hall, A. & Horvitz, H.R. The C. elegans PH domain protein CED-12 regulates cytoskeletal reorganization via a Rho/Rac GTPase signalling pathway. Dev. Cell 1, 477–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Schmidt, A. & Hall, A. Guanine nucleotide exchange factors for the Rho GTPases: Turning on the switch. Genes Dev. 16, 1587–1609 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Hoffman, G.R. & Cerione, R.A. Signaling to the Rho GTPases: networking with the DH domain. FEBS Lett. 513, 85–91 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Snyder, J.T. et al. Quantitative analysis of the effect of phosphoinositide interactions on the function of Dbl family proteins. J. Biol. Chem. 27, 27 (2001).

    Google Scholar 

  21. Worthylake, D.K., Rossman, K.L. & Sondek, J. Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature 408, 682–688 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Rossman, K.L. et al. A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange. EMBO J. 21, 1315–1326 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Katoh, H. & Negishi, M. RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo. Nature 424, 461–464 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Sanui, T. et al. DOCK2 regulates Rac activation and cytoskeletal reorganization through interaction with ELMO1. Blood 102, 2948–2950 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Nishihara, H. et al. Non-adherent cell-specific expression of DOCK2, a member of human CDM-family proteins. Biochim. Biophys. Acta 1452, 179–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, Q., Kimura, H. & Schubert, D. A novel mechanism for the regulation of amyloid precursor protein metabolism. J. Cell Biol. 158, 79–89 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Namekata, K., Enokido, Y., Iwasawa, K. & Kimura, H. MOCA induces membrane spreading by activating Rac1. J. Biol. Chem. 279, 14331–14337 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Vetter, I.R., Arndt, A., Kutay, U., Gorlich, D. & Wittinghofer A structural view of the Ran-importin β interaction at 2.3 Å resolution. Cell 97, 635–646 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Snyder, J.T., Singer, A.U., Wing, M.R., Harden, T.K. & Sondek, J. The pleckstrin homology domain of phospholipase C-β2 as an effector site for Rac. J. Biol. Chem. 278, 21099–21104 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mello, C.C., Kramer, J.M., Stinchcomb, D.T. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rojas, R.J., Kimple, R.J., Rossman, K.L., Siderovski, D.P. & Sondek, J. Establishment and emerging fluorescence-based assays for G-protein function: Ras-superfamily GTPases. Comb. Chem. High Throughput Screen. 6, 409–418 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Bouton and J. Casanova for comments on the manuscript and V. Yajnik, as well as members of the Ravichandran laboratory, for helpful discussions. We also thank M. Matsuda for original Dock180 plasmids and I. Macara for the His-tagged bacterially produced Rac. This work was supported by a US National Institutes of Health (NIH) grant GM-64709 (to K.S.R.) and grants from the Swiss National Science Foundation, The Ernst Hadorn Foundation, and the European Union (FP5 project APOCLEAR) to M.O.H. C.G. was supported by an Infectious Diseases Training grant from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kodi S Ravichandran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Dock WA/GE and Dock DSH3/GE mutants do not bind ELMO. (PDF 488 kb)

Supplementary Fig. 2

W665A mutant of full-length ELMO is less active than wild-type ELMO in GEF assay. (PDF 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, M., Kinchen, J., Rossman, K. et al. PH domain of ELMO functions in trans to regulate Rac activation via Dock180. Nat Struct Mol Biol 11, 756–762 (2004). https://doi.org/10.1038/nsmb800

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb800

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing